Optimization of the Turbine Grids Using Geometric Quality Criteria for Circumscription of the Profile and Channel

Автор(и)

DOI:

https://doi.org/10.20998/2078-774X.2017.09.01

Анотація

The multi-criteria optimization method of the turbine grids using the geometric quality criteria of circumscription of the turbine profiles and channels, created by them, is developed. The article presents the features of the proposed methodology and the mathematical description of the proposed complex of geometric criteria that describes the quality of the turbine grids. The method of optimization as well as convolution algorithms and regulation of geometric quality criteria complex has been described. The article presents the results of the optimization of three turbine grids. The results of comparative research of efficiency of optimal turbine grids, obtained using the proposed method of optimization, and the turbine grids built using the initial profiles P2 are given. A higher efficiency of the optimal turbine grids has shown and the physical nature of the results was explained. Because of the complex criteria of quality and quantity parameters, that have influence on the efficiency of turbine profile cascades, objective function is multimodal. Due to the high efficiency of the original profiles, the values of optimal profiles in extreme locations differ slightly. Therefore, the search for the best solution (global extremum point) demanded the combination of several methods for finding optimal solutions.

Біографія автора

Alexander Pavlovitch Usaty, National Technical University «Kharkiv Polytechnic Institute»

Посилання

Boiko, A. V. (1982), Optimal design of the axial turbine flow path, Vishcha school. Publishing house at Kharkov Un-ty,Kharkov,Russian.

Aronov, B. M., Zhukovsky, M. I. and Zhuravlev, V. A. (1975), Profiling the blades of aviation gas turbines,Engineering,Moscow.

Boiko, A. V., Usaty, A. P. and Barannik, V. S. (2016), "Designing Optimal Turbine Profiles Using Cubic InterpolationSpline",Bulletin of NTU "KhPI". Series: Power and heat engineering processes and equipment, No. 9(1181), pp. 31–36, ISSN 2078-774X,doi: 10.20998/2078-774X.2016.09.04.

Fazil, J. and Jayakumar, V. (2011), "Investigation of airfoil profile design using reverse engineering Bezier curve", JournalofEngineering and Applied Sciences, No. 7, pp. 43–52, ISSN 2466-4308.

Kozhevnikov, S. N. (1989), "Geometric criterion of contour profile smoothness of the turbine blades", Proceedings ofthehigher educational institutions. Series: Energy, pp. 91–93, Minsk.

Subotovich, V. P., Yudin, A. Yu. and Phan Cong Tam (2007), "The Results of Designing of Turbine Nozzle Profile Cascadeswiththe Help of the Solution Method of Inverse Problem", Bulletin of NTU "KhPI". Series:Powerandheatengineeringprocessesand equipment, No. 2, pp. 31–35, ISSN 2078-774X,

Rusanov, A. V., Pashchenco, N. V. and Kosyanova, A. I. (2009), "Analytical method of blade profiling of axial turbinesflowpaths", Eastern European Journal of Advanced Technologies, Vol. 2, No. 7, pp. 32–37, ISSN 1729-3774.

Yershov, S. V. and Yakovlev, V.А. (2012), "Ajerodinamicheskaja optimizacija lopa-tochnyh apparatov turbin:podhody,metody, rezul'taty [Aerodynamic optimization of turbine blades: approaches, methods, results]", Probl.ofengineering,Vol.15,No.2, pp. 3–13, ISSN 2466-4308.

Mengistu, T., Ghaly, W. and Mansour, T. (2007), "Aerodynamic shape optimization of turbine blades using a design-parameter-based shape representation", Proc. ASME Turbo Expo, Paper GT-28041.

Gukasova, He. А., Zhukovsky, М. I., Zisina-Molozhen, L. М. et all (1961), Aerodynamic improvement of steam andgasturbines grids, Gosenrgoizdat, Moscow, Russia.

Meltiuhov, V. А. (1986), Quality evaluation of the new turbine grids for diffuser and acceleration flows, Ph. D.thesis,Kharkov, Ukraine.

Grechanichenko, Yu. V. and Nesterenko, V. А. (1983), Vtorichnye techenija v reshetkah turbomashin, VishchaShkola,Kharkov, Ukraine.

Deych, М. Е., Deller, Sh. V. and Korshunov, B. А. (1994), "Jeksperimental'noe issledovanie soplovoj reshetki sumen'shennymikoncevymi poterjami [Experimental investigation of a nozzle array with reduced end losses]",Thermalengineering,No.10,pp.39–42.

(1984), OST 108.260.01-84. The nozzles profiles of permanent section of the stationary steam turbines. The types,basicparameters and dimensions, Moscow.

(1984), OST 108.260.02-84. The working blades profiles of permanent section of stationary steam turbines. The types,basicparameters and dimensions, Moscow.

Burlaka, М. V. (2011), "Ajerodinamicheskaja optimizacija napravljajushhih reshetok osevyh turbin [Axial turbines guidebladerim aerodynamics optimization]", Ph. D. thesis, NTU "KhPI", Kharkov, Ukraine.

Barannik, V. S. (2016), "Prostranstvennaja ajerodinamiches-kaja optimizacija napravljajushhej reshetki osevoj turbiny[Thethree-dimensional aerodynamic optimization of axial turbine nozzle cascade]", Ph. D. thesis, NTU "KhPI", Kharkov, Ukraine.

Boiko, A. and Usaty, A. (2017), "Use BIarc-Curves for Contour Description of the Turbine Profiles", Bulletin of NTU"KhPI".Series: Power and heat engineering processes and equipment, No. 8(1230), pp. 20–27, ISSN 2078-774X,doi:10.20998/2078-774X.2017.08.03.

Boiko, A., Govorushchenko, Y. and Usaty, A. (2016), Optimization of the Axial Turbines Flow Paths, Published bySciencePublishing Group 548 Fashion Avenue New York, NY 10018, U.S.A, ISBN 978-1-940366-67-8,availableat:http://www.sciencepublishinggroup.com/book/B-978-1-940366-67-8 (accessed 12 January 2017).

Germayer, Yu. B. (1971), Vvedenie v teoriju issledovanija operacij [Introduction to the theory of operations research],Nauka,Moscow, Russia.

Usaty, А. P. (2012), Multi-mode multi-parameters multi-criterion optimization of the turbine flow path in theintegratedinformation space, D. Sc. thesis, NTU "KhPI", Kharkov, Uktaine.

##submission.downloads##

Опубліковано

2017-10-25

Як цитувати

Boiko, A., Usaty, A. P., & Barannik, V. (2017). Optimization of the Turbine Grids Using Geometric Quality Criteria for Circumscription of the Profile and Channel. Вісник Національного технічного університету «ХПІ». Серія: Енергетичнi та теплотехнiчнi процеси й устаткування, (9), 6–16. https://doi.org/10.20998/2078-774X.2017.09.01

Номер

Розділ

Енергетичні та теплотехнічні процеси й устаткування