DOI: https://doi.org/10.20998/2078-774X.2019.03.11

Estimating Workability of Steam Boilers Superheaters Considering with the High-Temperature Creep and Uniform Chemical Corrosion

Aleksander Yefimov, Yury Romashov, Valerii Kavertsev

Анотація


It is proposed theoretical estimating workability of steam boilers superheaters on the base of considering the influence of a high-temperature uniform chemical corrosion on of a high-temperature creep of superheater pipes on account of stresses redistributions the pipes walls due to their thickness decreasing. The high-temperature uniform chemical corrosion is presented by the well-known time and temperature dependences of the height of damaged material. The high-temperature creep is considered using the well-known incremental-type theory taking into account the Cachanov-Rabotnov scalar damage parameter. It is proposed the mathematical model of state of superheaters pipes in the form of initial-boundary-value problem in the domain with the moving boundary. The differential equations, initial and boundary conditions of that problem are corresponded to the well-known in the theory of high-temperature creep. Moving of the boundary is corresponded to the well-known time dependence of the height of damaged material due to the high-temperature uniform chemical corrosion. Although, the used theory of creep and the used regularities of uniform corrosion are well-known separately, considering the influence of uniform corrosion on the creep is the complicated problem due to the moving boundary in the corresponded initial-boundary-value problem. It is shown, that the spatial variable replacement allows to reduce the proposed initial-boundary-value problem with the moving boundary to the initial-boundary-value problem with the fixed normed boundary, that allows to simplify numerical solving of the considered problem. The method of lines is discussed for solving the initial-boundary-value problem, representing the mathematical model of the state of pipes of superheaters.


Повний текст:

PDF (English)

Посилання


Annaratone D. Steam Generators Description and Design.

Berlin Heidelberg: Springer-Verlag, 2008. 427 p. ISBN 978-3-

-77714-4.

Huang J.-L., Zhou K.-Y., Xu J.-Q., Xu X.-H. and Xie J.-W.

Failure evaluation of steam-side oxide scales in superheater

tubes during unsteady thermal processes: A probabilistic method. Materials and Corrosion. 2014. Vol. 65, Is. 12. P. 1151–

https://doi.org/10.1002/maco.201307338.

Speicher M., Hueggenberg D., Klenk A., Zickler S., Metzger K.

Materials for Advanced Ultra-Supercritical Fossil-Fuel Power

Plants: Materials Properties, Microstructure, and Component

Behavior. Energy Technology. 2015. Vol. 4, Is. 1. P. 187–192.

https://doi.org/10.1002/ente.201500311.

Movahedi-Rad A., Plasseyed S. S., Attarian M. Failure analysis

of superheater tube. Engineering Failure Analysis. 2015. Vol.

P. 94–104.

https://doi.org/10.1016/j.engfailanal.2014.11.012

Tibba G. S., Altenbach H. Modelling Creep Behaviour of Superheater Materials. Energy Procedia. 2016. Vol. 93. P. 197–

https://doi.org/10.1016/j.egypro.2016.07.170.

Abang R., Weiß S., Krautz H. J. Impact of increased power

plant cycling on the oxidation and corrosion of coal-fired superheater materials. Fuel. 2018. Vol. 220. P. 521–534.

https://doi.org/10.1016/j.fuel.2018.02.047.

Timoshenko S. and Goodier J. N. Theory of elasticity. New

York Toronto London: MCGRAW-HILL BOOK COMPANY,

Inc., 1947. 506 p.

Timoshenko S. Strength of Materials. Part II: Advanced theory

and problems. Toronto New York London: D. VAN

NOSTRAND COMPANY, Inc., 1940. 510 p.

Betten J. Creep mechanics. Berlin Heidelberg: Springer-Verlag,

367 p. ISBN 3-540-23204-4.

Lemaitre J., Desmorat R. Engineering damage mechanics.

Ductile, creep, fatigue and brittle failures. Berlin Heidelberg

New York: Springer, 2005. 394 p. ISBN 3-540-21503-4.

Антикайн П. А. Коррозия металла парогенераторов.

Москва: Энергия, 1977. 112 с.

Morachkovskii O. K. and Romashov Yu. V. Solving initialboundary-value creep problems. International Applied Mechanics. 2009. Vol. 45, No. 10. P. 1061–1070.

https://doi.org/10.1007/s10778-010-0247-y.

Ромашов Ю. В., Поволоцкий Э. В. Анализ подходов к

оценке работоспособности оболочек стержневых твэлов

энергетических ядерных реакторов с учетом ползучести.

Вісник НТУ «ХПІ». Серія: Енергетичні та теплотехнічні

процеси й устаткування. Харків: НТУ«ХПІ», 2018. №

(1287). С. 63–66. ISSN 2078-774X. doi: 10.20998/2078-

X.2018.11.10.

Schiesser W. E. Method of Lines Analysis of Turing Models.

New Jersey: World Scientific, 2017. 254 p. ISBN


Пристатейна бібліографія ГОСТ


1. Annaratone D. (2008), Steam Generators Description and
Design, Springer-Verlag, Berlin Heidelberg, 427 p, ISBN 978-
3-540-77714-4.
2. Huang J.-L., Zhou K.-Y., Xu J.-Q., Xu X.-H. and Xie J.-W.
(2014), "Failure evaluation of steam-side oxide scales in superheater tubes during unsteady thermal processes: A probabilistic
method", Materials and Corrosion. vol. 65, is. 12, pp. 1151–
1161, https://doi.org/10.1002/maco.201307338.
3. Speicher M., Hueggenberg D., Klenk A., Zickler S., Metzger K.
(2015), "Materials for Advanced Ultra-Supercritical Fossil-Fuel
ISSN 2078-774X (print)
Вісник Національного технічного університету «ХПІ». Серія: Енергетичні
та теплотехнічні процеси й устаткування, № 3(1328) 2019 81
Power Plants: Materials Properties, Microstructure, and Component Behavior", Energy Technology, vol. 4, is. 1, pp. 187–
192, https://doi.org/10.1002/ente.201500311.
4. Movahedi-Rad A., Plasseyed S. S., Attarian M. (2015), "Failure
analysis of superheater tube", Engineering Failure Analysis,
vol. 48, pp. 94–104,
https://doi.org/10.1016/j.engfailanal.2014.11.012
5. Tibba G. S., Altenbach H. (2016), "Modelling Creep Behaviour
of Superheater Materials", Energy Procedia, vol. 93, pp. 197–
202, https://doi.org/10.1016/j.egypro.2016.07.170.
6. Abang R., Weiß S., Krautz H. J. (2018), "Impact of increased
power plant cycling on the oxidation and corrosion of coal-fired
superheater materials", Fuel, vol. 220, pp. 521–534,
https://doi.org/10.1016/j.fuel.2018.02.047.
7. Timoshenko S. and Goodier J. N. (1947), Theory of elasticity,
MCGRAW-HILL BOOK COMPANY, Inc., New York Toronto London, 506 p.
8. Timoshenko S. (1940), Strength of Materials. Part II: Advanced theory and problems, D. VAN NOSTRAND
COMPANY, Inc., Toronto New York London, 510 p.
9. Betten J. (2008), Creep mechanics, Springer-Verlag. Berlin
Heidelberg, 367 p, ISBN 3-540-23204-4.
10. Lemaitre J., Desmorat R., (2005), Engineering damage mechanics. Ductile, creep, fatigue and brittle failures, Springer.
Berlin Heidelberg New York, 394 p, ISBN 3-540-21503-4.
11. Antikayn P. A. (1977), Korroziya metalla parogeneratorov
[Corrosion of metal of steam generators], Energiya, Moscow,
In Russian, 112 p.
12. Morachkovskii O. K. and Romashov Yu. V. (2009), "Solving
initial-boundary-value creep problems", International Applied
Mechanics, vol. 45, no. 10, pp. 1061–1070,
https://doi.org/10.1007/s10778-010-0247-y.
13. Romashov Yu. and Povolotskii E. (2018), "Analysis of the
approaches to the assessment of the working capacity of the
shells of fuel elements of nuclear power reactors taking into
consideration the creepage", Bulletin of NTU "KhPI". Series:
Power and heat engineering processes and equipment, No.
11(1287), pp. 63–66, ISSN 2078-774X, doi: 10.20998/2078-
774X.2018.11.10.
14. Schiesser W. E. (2017), Method of Lines Analysis of Turing
Models, World Scientific, New Jersey, 254 p, ISBN
9789813226692.