DOI: https://doi.org/10.20998/2078-774X.2019.02.05

Approximate Estimates of the Temperature State of Ceramic Nuclear Fuel in Cylindrical Fuel Elements and the Influence of Processes and Parameters of a Nuclear Reactor Core

Yury Romashov, Dmytro Chibisov

Анотація


The approximate mathematical model of the temperature state of ceramic nuclear fuels in cylindrical fuel elements was proposed in the form of linear ordinary differential equation and the boundary conditions. The theory of heat conduction and assumptions about the axial symmetry and absence of heat flows along axis of fuel element, which allow to simplify the common equations in cylindrical coordinates, are the basis of the proposed simplified mathematical model for approximate estimating the temperature state of the nuclear fuel. The intensity of volume heat sources in fuel element was taken into account by using the average values corresponding with the heat power and the structural characteristics of a nuclear reactor core. The conception about the heat transfer coefficient was used for modeling interaction between the fuel and the heat carrier. This heat transfer coefficient depends on characteristic sizes and heat conductions of constituted materials of the fuel element and allows to estimate influence of these on the temperature state of the nuclear fuel. The analytical solution for the temperature of a ceramic fuel in cylindrical fuel elements was obtained and was used for researching. It was shown that the heat conductivity of the fuel has significantly influences both the average temperature and the difference between the inner and outer temperatures in the fuel pellet. At the same time, other parameters have significant influence only on the average temperature of the fuel pellet. Due to these, it is necessary to consider the temperature dependence of the thermal conductivities of the materials constituted the fuel elements for more precisely estimations the temperature state of the fuel pellets, which will lead to nonlinear equations will required the numerical methods for their solving.


Повний текст:

PDF (English)

Посилання


Masterson R. E. (2017), Nuclear Engineering Fundamentals. A Practical Perspective, CRC Press, Boca Raton, FL, 961 p., ISBN 978-1-482-22149-7

Saha P. (2017), Nuclear Reactor Thermal-Hydraulics: Past, Present and Future, ASME Press, New York, 148 p., ISBN 978-0-791-86128-8.

Lamarsh J. R. and Baratta A. J. (2001), Introduction to Nuclear Engineering, Prentice Hall, Upper Saddle River, New Jersey, 783 p., ISBN 0-201-82498-1.

Yefimov A. V., Romashov Yu. V. and Chibisov D. O. (2018), “Modeling of Axisymmetric Heat Conduction in Compact Products of Ceramic Nuclear Fuel with the Temperature Dependencies of Thermophysical Characteristics”, Bulletin of the National Technical University “KhPI”. Series: System analysis, control and information technology, no. 21(1297), pp. 3–7, ISSN 2079-0023.

Hahn D. W., Özişik M. N. (2012), Heat Conduction, John Wiley & Sons, Inc., Hoboken,718 p., ISBN 978-1-118-41128-5.

Sarkisov A. A., Puchko V. K. (1989), Fizicheskiye osnovy ekspluatatsii yadernykh paroproizvodyashchikh ustanovok [The physical basis of the operation of nuclear steam plants], In Russian, Energoatomizdat, Moscow, 504 p., ISBN 5-283-03764-9.

Denisov V. P., Dragunov Yu. G. (2002), Reaktornyye ustanovki VVER dlya atomnykh elektrostantsiy [VVER reactor installations for nuclear power plants], In Russian, IzdAt, Moscow, 480 p., ISBN 5-86656-133-6.

Chirkin V. S. (1968), Teplofizicheskiye svoystva materialov yadernoy tekhniki: spravochnik [Thermophysical properties of nuclear engineering materials: a reference book], In Russian, Atomizdat, Moscow, 484 p.

Ovchinnikov F. Ya. and Semenov V. V. (1988), Ekspluatatsionnyye rezhimy vodo-vodyanykh energeticheskikh reaktorov [Operational modes of water-cooled power reactors], In Russian, Energoatomizdat, Moscow, 359 p., ISBN 5-283-03818-1.

Yefimov A., Romashov Yu., Yesypenko T. and Chibisov D. (2018), “Numerical methods used for the solution of heat conductivity problems to study the temperature state of ceramic nuclear fuel. Bulletin of the National Technical University “KhPI”. Series: Power and Heat Engineering Processes and Equipment, no. 13(1289), pp. 33–36, ISSN 2078-774X, doi: 10.20998/2078-774X.2018.13.06.


Пристатейна бібліографія ГОСТ


1.     Masterson R. E. Nuclear Engineering Fundamentals. A Practical Perspective. Boca Raton, FL: CRC Press, 2017. 961 p. ISBN 978-1-482-22149-7

2.     Saha P. Nuclear Reactor Thermal-Hydraulics: Past, Present and Future. New York: ASME Press, 2017. 148 p. ISBN 978-0-791-86128-8.

3.     Lamarsh J. R. and Baratta A. J. Introduction to Nuclear Engineering. Upper Saddle River, New Jersey: Prentice Hall, 2001. 783 p. ISBN 0-201-82498-1.

4.     Ефимов А. В., Ромашов Ю. В., Чибисов Д. А. Моделирование осесимметричной теплопроводности в компактных изделиях керамического ядерного топлива с учетом температурных зависимостей теплофизических характеристик. Вісник Національного технічного університету «ХПІ». Серія: Системний аналіз, управління та інформаційні технології. 2018. № 21(1297). С. 3–7. ISSN 2079-0023.

5.     Hahn D. W., Özişik M. N. Heat Conduction. Hoboken: John Wiley & Sons, Inc., 2012. 718 p. ISBN 978-1-118-41128-5.

6.     Cаркисов A. A., Пучко В. К. Физические основы эксплуатации ядерных паропроизводящих установок. Москва: Энергоатомиздат, 1989. 504 с. ISBN 5-283-03764-9.

7.     Денисов В. П., Драгунов Ю. Г. Реакторные установки ВВЭР для атомных электростанций Москва: ИздАТ, 2002. 480 с. ISBN 5-86656-133-6.

8.     Чиркин В. С. Теплофизические свойства материалов ядерной техники: справочник. Москва: Атомиздат, 1968. 484 с.

9.     Овчинников Ф. Я., Семенов В. В. Эксплуатационные режимы водо-водяных энергетических реакторов. Москва: Энергоатомиздат, 1988. 359 с. ISBN 5-283-03818-1.

10.  Ефимов А. В., Ромашов Ю. В., Есипенко Т. А., Чибисов Д. А. Численные методы решения задач теплопроводности для изучения температурного состояния керамического ядерного топлива Вісник Національного технічного університету «ХПІ». Серія: Енергетичні та теплотехнічні процеси й устаткування. 2018. № 13(1289). С. 33–36. ISSN 2078-774X. doi: 10.20998/2078-774X.2018.13.06.