ESTIMATION OF WASTE ENERGY UTILIZATION EFFICIENCY IN ELECTROCHEMICAL POWER PLANTS OF TRANSPORT VESSELS
DOI:
https://doi.org/10.20998/2078-774X.2016.10.02Анотація
Analysis of waste energy utilization efficiency in electrochemical power plants based on proton exchange membrane fuel cells for transport vessels is done in this article. Quantitative estimation of waste heat energy flow in electrochemical power plants from 100 kW to 2000 kW operated on pure hydrogen is the main aim of research. Usage of hot water or saturated (or slightly superheated) steam at outlet from fuel cell as heating agent is considered. Total fuel mass and capacity for one-way trip are estimated for electrochemical power plants operated on pure hydrogen, methanol and liquefied natural gas. Potentially-enable quantity of power resources obtained through utilization of heat power and slightly superheated steam is come out. Analysis of these indexes makes possible justification of rational engineering choices at ships’ conceptual design and elaborates recommendations of keeping options for different variants of waste energy utilization in electrochemical power plants based on low-temperature fuel cells.Посилання
Bård, M. H. (2002), ²Fuel cell technology for ferries², MARINTEK paper at the IMTAconferenceGoldCoast,Australia,October2002, available at: http://www.sintef.no/globalassets/upload/marintek/pdf-filer/publications/fuel-cell-technology-for-ferries_bmh.pdf (Accessed 01 January 2016).
(2008), ²Fuel cell ship in the real world², The Naval Architect, November, pp. 56–57.
(2009), ²Viking Lady tests fuel cell power², Marine Power & Propulsion (a one-year subscription to The Naval Architect, pp.30.
Overton, T. (2014), ²World’s Largest Fuel Cell Plant Opens in South Korea², POWER Business & Technology for theGlobalGeneration Industry Since 1882, 25 February 2014, available at: http://www.powermag.com/worlds-largest-fuel-cell-plant-opens-in-south-korea/ (Accessed 01 December 2015.
By EG&G Technical Services, Inc. (2004), ²Fuel Cell Handbook (Seventh Edition)², U. S. Department of Energy Office ofFossilEnergy National Energy Technology Laboratory, November 2004, Morgantown, West Virginia 26507-0880,availableat:https://www.netl.doe.gov/File%20Library/research/coal/energy%20systems/fuel%20cells/FCHandbook7.pdf.–Заглавие с экрана (Accessed 02 November 2015).
Tae Seok Lee, J. N. Chung and Yen-Cho Chen (2011), ²Design and optimization of a combined fuel reforming and solidoxidefuel cell system with anode off-gas recycling², Energy Conversion and Management, Vol. 52, pp. 3214–3226,ISSN0196-8904.–doi: 10.1016/j.enconman.2011.05.009.
LiMing, C., ZhaoJia LIN and Mа ZiFeng (2009), ²Process modeling of fuel cell vehicle power system², Chinese ScienceBulletin,Vol. 54, no. 6, pp. 972–977, o-ISSN 2095-9281.
Chaney, Larry J., Tharp, Mike R. and Wolf, Tom W. [et al.] (1999), ²Fuel Cell/Micro-Turbine Combined Cycle²,NorthernResearch and Engineering Corporation, December 1999, availableat:http://www.osti.gov/scitech/servlets/purl/802823(Accessed 02 November 2015), doi: 10.2172/802823.
Orecchini, F., Bocci, E. Enrico and Carlo, A. Di (2008), ²Process Simulation of a Neutral Emission Plant UsingChestnut’sCoppice Gasification and Molten Carbonate Fuel Cells², Journal of Fuel Cell Science and Technology, May, Vol. 5, pp. 1–9.
Artemov, G. A. and Gorbov V. M. (2002), Sudnovi energetychni ustanovky [Ship power plants], UDMTU, Nikolaev, Ukraine.
Korovin, N. V. (2005), Toplivnye jelementy i jelektrohimicheskie jenergoustanovki [Fuel cells and electrochemical powerplants],MJeI, Moscow, Russia.
Gorbov, V. M. and Karpov, M. A. (2009), ²Sostojanie i perspektivy primenenija toplivnyh jelementov na sudah [Stateandprospective of fuel cells usage on ships]², Sudnova energetyka : stan ta problemy : mater. IV Mizhnar. nauk.-tehn.konf[Marineengineering: state and problems], NUK, Nikolaev, Ukraine.
Kovalenko, V. F. and Lukin, G. Ja. (1970), Sudovye vodoopresnitel'nye ustanovki [Marine desalination plant],[Marinedesalination plant] Sudostroenie, Leningrad, Russia.
(1999), SanPiN 2.5.2-703-98 Sanitarnye pravila i normy dlja vodnogo transporta [Sanitary Rules and Regulations forwatertransport], InterSJeN, Moscow, Russia.
Gus'kov, M. G. et al. (1989), Sanitarnye sistemy morskih sudov, LKI, Leningrad.
Kopachinskij, P. A. and Taraskin, V. P. (1968), Sudovye ohladiteli i podogrevateli zhidkostej [Marine coolers and heatersforliquids], Sudostroenie, Leningrad, Russian.
Makarov, V. G., Sitchenko, L. S. and Plesevichjus, P. I. (1993), Sudovye sistemy mikroklimata. Ventiljacija iotopleniepomeshhenij [Marine microclimate systems. Ventilation and air conditioning], GMTU, St. Petersburg, Russia.
Hordas, G. S. (1983), Raschety obshhesudovyh sistem [Ship piping systems design], Sudostroenie, Leningrad, Russia.
(2015), ²BWT on Course for Compliance², The Naval Architect, May, pp. 46–48.
Acomi, N. and Ghiłă, S. (2012), ²Using Heat Treatment of Ballast Water for Killing Marine Microorganisms², Annals ofDAAAMfor 2012 & Proceedings of the 23rd International DAAAM Symposium, Vienna, 2012, vol. 23, no. 1, pp. 1115–1118.
Yanran Cao, Vilmar Æsøy, Anne Stene (2014), Ballast Water Analysis and Heat Treatment Using Waste HeatRecoverySystems On board Ships, IHS Maritime, Colorado available at: http://www.scs-europe.net/dlib/2014/ecms14papers/svt_ECMS2014_0058.pdf (Accessed 02 November 2015).