DOI: https://doi.org/10.20998/2078-774X.2016.10.02

ESTIMATION OF WASTE ENERGY UTILIZATION EFFICIENCY IN ELECTROCHEMICAL POWER PLANTS OF TRANSPORT VESSELS

Viktor Gorbov, Vira Mitienkova, Maxim Karpov, Olha Fedorova

Анотація


Analysis of waste energy utilization efficiency in electrochemical power plants based on proton exchange membrane fuel cells for transport vessels is done in this article. Quantitative estimation of waste heat energy flow in electrochemical power plants from 100 kW to 2000 kW operated on pure hydrogen is the main aim of research. Usage of hot water or saturated (or slightly superheated) steam at outlet from fuel cell as heating agent is considered. Total fuel mass and capacity for one-way trip are estimated for electrochemical power plants operated on pure hydrogen, methanol and liquefied natural gas. Potentially-enable quantity of power resources obtained through utilization of heat power and slightly superheated steam is come out. Analysis of these indexes makes possible justification of rational engineering choices at ships’ conceptual design and elaborates recommendations of keeping options for different variants of waste energy utilization in electrochemical power plants based on low-temperature fuel cells.

Повний текст:

PDF (English)

Посилання


Bård, M. H. (2002), ²Fuel cell technology for ferries², MARINTEK paper at the IMTA conference Gold Coast, Australia, October 2002, available at: http://www.sintef.no/globalassets/upload/marintek/pdf-filer/publications/fuel-cell-technology-for-ferries_bmh.pdf (Accessed 01 January 2016).

(2008), ²Fuel cell ship in the real world², The Naval Architect, November, pp. 56–57.

(2009), ²Viking Lady tests fuel cell power², Marine Power & Propulsion (a one-year subscription to The Naval Architect, pp. 30.

Overton, T. (2014), ²World’s Largest Fuel Cell Plant Opens in South Korea², POWER Business & Technology for the Global Generation Industry Since 1882, 25 February 2014, available at: http://www.powermag.com/worlds-largest-fuel-cell-plant-opens-in-south-korea/ (Accessed 01 December 2015.

By EG&G Technical Services, Inc. (2004), ²Fuel Cell Handbook (Seventh Edition)², U. S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory, November 2004, Morgantown, West Virginia 26507-0880, available at: https://www.netl.doe.gov/File%20Library/research/coal/energy%20systems/fuel%20cells/FCHandbook7.pdf. – Заглавие с экрана (Accessed 02 November 2015).

Tae Seok Lee, J. N. Chung and Yen-Cho Chen (2011), ²Design and optimization of a combined fuel reforming and solid oxide fuel cell system with anode off-gas recycling², Energy Conversion and Management, Vol. 52, pp. 3214–3226, ISSN 0196-8904. – doi: 10.1016/j.enconman.2011.05.009.

LiMing, C., ZhaoJia LIN and Mа ZiFeng (2009), ²Process modeling of fuel cell vehicle power system², Chinese Science Bulletin, Vol. 54, no. 6, pp. 972–977, o-ISSN 2095-9281.

Chaney, Larry J., Tharp, Mike R. and Wolf, Tom W. [et al.] (1999), ²Fuel Cell/Micro-Turbine Combined Cycle², Northern Research and Engineering Corporation, December 1999, available at: http://www.osti.gov/scitech/servlets/purl/802823 (Accessed 02 November 2015), doi: 10.2172/802823.

Orecchini, F., Bocci, E. Enrico and Carlo, A. Di (2008), ²Process Simulation of a Neutral Emission Plant Using Chestnut’s Coppice Gasification and Molten Carbonate Fuel Cells², Journal of Fuel Cell Science and Technology, May, Vol. 5, pp. 1–9.

Artemov, G. A. and Gorbov V. M. (2002), Sudnovi energetychni ustanovky [Ship power plants], UDMTU, Nikolaev, Ukraine.

Korovin, N. V. (2005), Toplivnye jelementy i jelektrohimicheskie jenergoustanovki [Fuel cells and electrochemical power plants], MJeI, Moscow, Russia.

Gorbov, V. M. and Karpov, M. A. (2009), ²Sostojanie i perspektivy primenenija toplivnyh jelementov na sudah [State and prospective of fuel cells usage on ships]², Sudnova energetyka : stan ta problemy : mater. IV Mizhnar. nauk.-tehn. konf [Marine engineering: state and problems], NUK, Nikolaev, Ukraine.

Kovalenko, V. F. and Lukin, G. Ja. (1970), Sudovye vodoopresnitel'nye ustanovki [Marine desalination plant], [Marine desalination plant] Sudostroenie, Leningrad, Russia.

(1999), SanPiN 2.5.2-703-98 Sanitarnye pravila i normy dlja vodnogo transporta [Sanitary Rules and Regulations for water transport], InterSJeN, Moscow, Russia.

Gus'kov, M. G. et al. (1989), Sanitarnye sistemy morskih sudov, LKI, Leningrad.

Kopachinskij, P. A. and Taraskin, V. P. (1968), Sudovye ohladiteli i podogrevateli zhidkostej [Marine coolers and heaters for liquids], Sudostroenie, Leningrad, Russian.

Makarov, V. G., Sitchenko, L. S. and Plesevichjus, P. I. (1993), Sudovye sistemy mikroklimata. Ventiljacija i otoplenie pomeshhenij [Marine microclimate systems. Ventilation and air conditioning], GMTU, St. Petersburg, Russia.

Hordas, G. S. (1983), Raschety obshhesudovyh sistem [Ship piping systems design], Sudostroenie, Leningrad, Russia.

(2015), ²BWT on Course for Compliance², The Naval Architect, May, pp. 46–48.

Acomi, N. and Ghiłă, S. (2012), ²Using Heat Treatment of Ballast Water for Killing Marine Microorganisms², Annals of DAAAM for 2012 & Proceedings of the 23rd International DAAAM Symposium, Vienna, 2012, vol. 23, no. 1, pp. 1115–1118.

Yanran Cao, Vilmar Æsøy, Anne Stene (2014), Ballast Water Analysis and Heat Treatment Using Waste Heat Recovery Systems On board Ships, IHS Maritime, Colorado available at: http://www.scs-europe.net/dlib/2014/ecms14papers/svt_ECMS2014_0058.pdf (Accessed 02 November 2015).


Пристатейна бібліографія ГОСТ


1    Bård, M. H. Fuel cell technology for ferries [Electronic resource] / M. H. Bård // MARINTEK paper at the IMTA conference Gold Coast, Australia, October 2002. – Mode of access : http://www.sintef.no/globalassets/upload/marintek/pdf-filer/publications/fuel-cell-technology-for-ferries_bmh.pdf. – Заглавие с экрана. – 01.01.2016.

 

2    Fuel cell ship in the real world [Text] // The Naval Architect. – 2008. – November. – P. 56–57.

 

3    Viking Lady tests fuel cell power [Text] // Marine Power & Propulsion (a one-year subscription to The Naval Architect). – 2009. – P. 30.

 

4    Overton, T. World’s Largest Fuel Cell Plant Opens in South Korea [Electronic resource] / T. Overton // POWER Business & Technology for the Global Generation Industry Since 1882. – Дата опубликования 25.02.2014. – Mode of access: http://www.powermag.com/worlds-largest-fuel-cell-plant-opens-in-south-korea/. – Заглавие с экрана. – 01.12.2015.

 

5    By EG&G Technical Services, Inc. Fuel Cell Handbook (Seventh Edition) [Electronic resource] // U. S. Department of Energy Office of Fossil Energy National Energy Technology Laboratory. – November 2004. – Morgantown, West Virginia 26507-0880. – Mode of access : https://www.netl.doe.gov/File%20Library/research/coal/energy%20systems/fuel%20cells/FCHandbook7.pdf. – Заглавие с экрана. – 02.11.2015.

 

6    Lee, T. S. Design and optimization of a combined fuel reforming and solid oxide fuel cell system with anode off-gas recycling [Text] / Tae Seok Lee, J. N. Chung, Yen-Cho Chen  // Energy Conversion and Management. – 2011. – Vol. 52. – P. 3214–3226. – ISSN ISSN 0196-8904. – doi: http://dx.doi.org/10.1016/j.enconman.2011.05.009

 

7    LiMing, C. Process modeling of fuel cell vehicle power system [Text] / C. LiMing, ZhaoJia LIN, Mа ZiFeng // Chinese Science Bulletin. – 2009. – Vol. 54, № 6. – P. 972–977. – ISSN 2095-9281 (online).

 

8    Chaney, Larry J. Fuel Cell/Micro-Turbine Combined Cycle [Electronic resource] / Larry J. Chaney, Mike R. Tharp, Tom W. Wolf [et al.] // Northern Research and Engineering Corporation. – December 1999. – Mode of access : http://www.osti.gov/scitech/servlets/purl/802823. – Заглавие с экрана. – 02.11.2015. – doi: 10.2172/802823.

 

9    Orecchini, F. Process Simulation of a Neutral Emission Plant Using Chestnut’s Coppice Gasification and Molten Carbonate Fuel Cells [Text] / F. Orecchini, E. Enrico Bocci, A. Di Carlo // Journal of Fuel Cell Science and Technology. – 2008. – May. – Vol. 5. – P. 1–9.

 

10  Артемов, Г. А. Суднові енергетичні установки [Текст] : навч. посібник / Г. А. Артемов, В. М. Горбов. – Миколаїв : УДМТУ, 2002. – 353 с.

 

11  Коровин, Н. В. Топливные элементы и электрохимические энергоустановки [Текст] / Н. В. Коровин. – М. : МЭИ, 2005. – 208 с.

 

12  Горбов, В. М. Состояние и перспективы применения топливных элементов на судах [Текст] / В. М. Горбов, М. А. Карпов // Суднова енергетика : стан та проблеми : матер. ІV Міжнар. наук.-техн. конф. – Миколаїв : НУК, 2009. – С. 40–43.

 

13  Коваленко, В. Ф. Судовые водоопреснительные установки [Текст] / В. Ф. Коваленко, Г. Я. Лукин. – Ленинград : Судостроение, 1970. – 304 с.

 

14  СанПиН 2.5.2-703-98 Санитарные правила и нормы для водного транспорта [Текст]. – М. : ИнтерСЭН, 1999. – 139 с.

 

15  Гуськов, М. Г. Санитарные системы морских судов [Текст] : учеб. пособие / М. Г. Гуськов [и др.]. – Ленинград : ЛКИ, 1989. – 112 с.

 

16  Копачинский, П. А. Судовые охладители и подогреватели жидкостей [Текст] / П. А. Копачинский, В. П. Тараскин. – Ленинград : Судостроение, 1968. – 245 с.

 

17  Макаров, В. Г. Судовые системы микроклимата. Вентиляция и отопление помещений [Текст] : учеб. пособие / В. Г. Макаров, Л. С. Ситченко, П. И. Плесевичюс. – С.-Петербург : ГМТУ, 1993. – 125 с.

 

18  Хордас, Г. С. Расчеты общесудовых систем [Текст] : справ. / Г. С. Хордас. – Ленинград : Судостроение, 1983. – 440 с.

 

19  BWT on Course for Compliance [Text] // The Naval Architect. – 2015. – May. – P. 46–48.

 

20  Acomi, N. Using Heat Treatment of Ballast Water for Killing Marine Microorganisms [Text] / N. Acomi, S. Ghiłă // Annals of DAAAM for 2012 & Proceedings of the 23rd International DAAAM Symposium. – Vienna, 2012. – Vol. 23, No. 1. – P. 1115–1118.

 

21  Yanran Cao Ballast Water Analysis and Heat Treatment Using Waste Heat Recovery Systems On board Ships [Electronic resource] / Yanran Cao, Vilmar Æsøy, Anne Stene. – Colorado : IHS Maritime, 2014. – Mode of access : http://www.scs-europe.net/dlib/2014/ecms14papers/svt_ECMS2014_0058.pdf. – Заглавие с экрана. – 02.11.2015.