DOI: https://doi.org/10.20998/2078-774X.2016.10.25

Spiral Vortex Motion Fluid Analysis and Possibilities of Its Use in the Hydraulic System

Mykhailo Vasylovych Loburenko, Andriy Anatolovych Papchenko, Olha Anatoliivna Matvienko

Анотація


The article reveals the possibility of hydraulic systems efficiency increase by creating optimal conditions for mutual functioning of pipeline network and pump as a single unit. The problems were defined as following: non-optimal using of hydraulic systems; need of increase of centrifugal pump efficiency. The main goal of the article is the analysis of natural principle of liquids swirling motion and applying such motions in hydraulic systems. This goal was set in consideration that, natural motions are well harmonized and go on with minimal losses of energy. Previous investigations of swirling motions were observed. Possibility of using swirling natural liquid flows in engineering structures is revealed. Proposed method of solving the problems is experimental investigation of swirling structures. Swirling structures were created with special turbulizers (vortex generators) installed on inlet tube, a spiral wire with a constant pitch or by changing geometric form of pipes under experiment. It was determined that the maximum losses is for the tube with using spiral wire inside the tube, a pipe with minimum losses is plastic turbulizer printed on a 3D printer. However losses in all cases were greater than in the conventional straight circular tube. The article gives a review of laboratory set-up for experimental investigations. More than 20 experiments were performed with using different geometric pipe forms and auxiliary turbulizing elements. A range of respective results was obtained. They revealed imperfections of physical experiments and suggested ways of correction. Investigations in this direction will allow regulating energy losses in pipeline system, that will result in hydraulic system efficiency, and also reducing energy consumption while pumping liquids.

Повний текст:

PDF (English)

Посилання


Kostjuk, A. V., Dibrova, O. V., Sokolov, S. A. and Shilov R. N. (2011), Provedenie tehnicheskogo audita nasosnih sistem [Pumping systems technical audit] , Teorija i praktika nasoso- i kompressorostroenija [Theory and practice of pump- and compressor], in V. A. Marcinkovskogo, I. B. Tverdohleba, E. N. Savchenko (ed.), Sumy State university, Sumy, Part. Ways of increasing energy efficiency of pumping systems , pp. 23–25, ISBN 978-966-657-384-4.

Zhang He, Zhang Xiao Hui, Cui Jian Guo (2013), ²Research on the optimization of supply water pipe network², Applied Mechanics and Materials, Vols. 295–298, pp. 1876–1879, ISSN 1662-7482, doi: 10.4028/www.scientific.net/AMM.295-298.1876.

Zhou Hui-Ping, Shao Wei-Yun and Jiang Li-Jie (2013), ²Optimal model of hydrodynamic controlling on pumps and slice gates for water quality improvement², Applied Mechanics and Materials, Vols. 316–317, P. 732–740, ISSN 1662-7482 doi: 10.4028/www.scientific.net/AMM.316-317.732.

Mateus Ricardo Nogueira Vilanova and José Antônio Perrella Balestieri (2015), ²Modeling of hydraulic and energy efficiency indicators for water supply systems², Renewable and Sustainable Energy Reviews, no. 48 pp. 540–557, ISSN 1364-0321, doi: 10.1016/j.rser.2015.04.024.

Afanas'ev, A. V., Bekker, L. M. and Tverdohleb, I. B. (2011), ² Preimushhestva ispol'zovanija chastotno-reguliruemogo privoda na primere nasosnogo oborudovanija dlja truboprovodnogo transporta nefti ² [The advantages of using the variable frequency drive as an example of pumping equipment for oil pipeline transport]², Teorija i praktika nasoso- i kompressorostroenija [Theory and practice of pump- and compressor], in V. A. Marcinkovskogo, I. B. Tverdohleba, E. N. Savchenko (ed.), Sumskij gosudarstvennyj universitet, Sumy, Part Increasing energy efficiency systems through the application of variable frequency pump drive. , pp. 27–33, ISBN 978-966-657-384-4

Katarzyna Pietrucha-Urbanik (2015), ²Failure analysis and assessment on the exemplary water supply network², Engineering Failure Analysis, Vol. 57, pp. 137–142.

Li, Qunsong, Yang, Qian, Li, Zhisong and Yu Tianlan (2011), ²3D Numerical Simulation of Fluid Flow and Heat Transfer in Tube with Spiral-Flange Insert², Advanced Materials Research, Vols 236–238, pp. 1508–1515.

Yu, Tianxiang, Zhou, Wenyuan, Yu, Tianlan, Peng, Deqi and Ye, Lei (2013), ²Design of an Automatic Cleaning Energy-Saving Technology for Manganese Sulfate Continuous Production Crystallizer², Applied Mechanics and Materials, Vol. 331, pp. 52–56, ISSN: 1350-6307, doi: 10.1016/j.engfailanal.2015.07.036.

Sсhauberger, Viktor (2007), Jenergija vody [Water Energy], Jeksmo, Jauza, Moscow, Russian.

Milovich', A. (1914), ²Nerabochij izgib potoka zhidkosti [Nonoperating bending fluid flow]², Bjulleteni politehnicheskogo obshhestva, sostojashhego pri Imperatorskom Tehnicheskom Uchilishhe [Bulletins Polytechnic Society, consisting of the Imperial Technical School], no. 10, pp. 485–563. Russia

Mera, I., Franca, M. J., Anta, J. and Peña, E. (2015), ²Turbulence anisotropy in a compound meandering channel with different submergence conditions², Advances in Water Resources, Vol. 81, pp. 142–151, ISSN: 0309-1708, doi: 10.1016/j.advwatres.2014.10.012.

Schauberger, Viktor (1931), ²Iskusstvennoe ruslo dlja splava drevesiny [Artificial channel for the alloy timber]², Austria, Pat. 122144, 81V.

Johansson, Lars, Ovesen, Morten and Hallberg, Curt (2002), ²Self-organizing Flow Technology in Viktor Schauberger`s Footsteps², Institute of Ecological Technology, Malmö, pp. 50.

Schauberger, Viktor (2000), The Energy Evolution, in Callum Coats (ed.), Gateway Books, Bath, United Kingdom.


Пристатейна бібліографія ГОСТ


1    Костюк, А. В. Проведение технического аудита насосних систем [Текст] / А. В. Костюк, О. В. Диброва, С. А. Соколов, Р. Н. Шилов // Теория и практика насосо- и компрессоростроения : моногр. / под ред. В. А. Марцинковского, И. Б. Твердохлеба, Е. Н. Савченко. – Сумы : Сумской государственный университет, 2011. – Глава. Пути повышения энергоэффективности насосных систем. – С. 23–25. – ISBN 978-966-657-384-4

 

2    Zhang He Research on the optimization of supply water pipe network [Text] / Zhang He, Zhang Xiao Hui, Cui Jian Guo // Applied Mechanics and Materials. – 2013. – Vols. 295–298. – P. 1876–1879. – ISSN 1662-7482. – doi:10.4028/www.scientific.net/AMM.295-298.1876.

 

3    Zhou, Hui-Ping Optimal model of hydrodynamic controlling on pumps and slice gates for water quality improvement [Text] / Zhou Hui-Ping, Shao Wei-Yun, Jiang Li-Jie // Applied Mechanics and Materials. – 2013.- Vols. 316–317. – P. 732–740. – ISSN 1662-7482. – doi: 10.4028/www.scientific.net/AMM.316-317.732.

 

4    Mateus Ricardo Nogueira Vilanova Modeling of hydraulic and energy efficiency indicators for water supply systems / Mateus Ricardo Nogueira Vilanova, José Antônio Perrella Balestieri // Renewable and Sustainable Energy Reviews. – 2015. – № 48. – P. 540–557. – ISSN 1364-0321. – doi: 10.1016/j.rser.2015.04.024.

 

5    Афанасьев, А. В. Преимущества использования частотно-регулируемого привода на примере насосного оборудования для трубопроводного транспорта нефти [Текст] / А. В. Афанасьев, Л. М. Беккер, И. Б. Твердохлеб // Теория и практика насосо- и компрессоростроения : моногр. / под ред. В. А. Марцинковского, И. Б. Твердохлеба, Е. Н. Савченко. – Сумы : Сумский государственный университет, 2011. – Глава. Повышение энергоэффективности систем путём применения частотно-регулируемого привода насоса. – С. 27–33. – ISBN 978-966-657-384-4

 

6    Katarzyna Pietrucha-Urbanik Failure analysis and assessment on the exemplary water supply network [Text] / Katarzyna Pietrucha-Urbanik // Engineering Failure Analysis. – 2015. – Vol. 57. – P. 137–142. – ISSN 1350-6307. – doi: 10.1016/j.engfailanal.2015.07.036.

 

7    Li, Qunsong 3D Numerical Simulation of Fluid Flow and Heat Transfer in Tube with Spiral-Flange Insert / Qunsong Li, Qian Yang, Zhisong Li, Tianlan Yu // Advanced Materials Research. – 2011. – Vols 236–238. – P. 1508–1515. – ISSN 1662-8985, – doi:10.4028/www.scientific.net/AMR.236-238.1508.

 

8    Yu, Tianxiang Design of an Automatic Cleaning Energy-Saving Technology for Manganese Sulfate Continuous Production Crystallizer [Text] / Tianxiang Yu, Wenyuan Zhou, Tianlan Yu, Deqi Peng, Lei Ye // Applied Mechanics and Materials. – 2013. – Vol. 331. – P. 52–56. – ISSN 1662-7482, – doi: 10.4028/www.scientific.net/AMM.331.52.

 

9    Шаубергер, Виктор Энергия воды [Текст] / Виктор Шаубергер ; [перевод с англ. М. Новиковой]. – Москва : Эксмо ; Яуза, 2007. – 320 с. – ISBN 978-5-699-20607-0.

 

10  Миловичь, А. Нерабочий изгиб потока жидкости [Текст] / А. Миловичь // Бюллетени политехнического общества, состоящего при Императорском Техническом Училище. – Москва, 1914. – № 10. – С. 485–563.

 

11  Mera, I. Turbulence anisotropy in a compound meandering channel with different submergence conditions [Text] / I. Mera, M. J. Franca, J. Anta, E. Peña // Advances in Water Resources. – 2015. – Vol. 81. – P. 142–151. – ISSN 0309-1708. – doi: 10.1016/j.advwatres.2014.10.012.

 

12  Пат. 122144. Австрия, 81В. Искусственное русло для сплава древесины / Виктор Шаубергер ; заявл. 11.12.1929 ; опубл. 10.04.1931.

 

13  Johansson, Lars Self-organizing Flow Technology in Viktor Schauberger`s Footsteps [Text] / Lars Johansson, Morten Ovesen, Curt Hallberg // Institute of Ecological Technology. – Malmö. – 2002. – P. 50.

 

14            Schauberger, Viktor The Energy Evolution [Text] / Viktor Schauberger ; [Callum Coats (ed.)]. – Bath : Gateway Books, 2000. – 222 p.