Increasing the Stability of Combustion Processes in the Combustion Chamber of Gas-Turbine Engine through the Improvement of the Air-Gas Channe

Автор(и)

DOI:

https://doi.org/10.20998/2078-774X.2016.09.09

Анотація

A possibility of carrying out the numerical experiment using the up-to-date tools of computational hydrodynamics to predict pulsating combustion modes at the stage of engine development has been discussed. It will allow us to considerably reduce the expenditures required for the engine design and its development increasing simultaneously the operating efficiency of power systems. The purpose of this investigation is to increase the stability of combustion processes of gaseous fuel in the low-emission combustion chambers of gas turbine engines due to the gas-dynamic improvement of the air-gas channel. Theoretical studies showed that the gas-dynamic improvement of the air-gas channel in the low-emission combustion chambers of gas turbine engines allows us to enlarge the range of the stable operation of fuel-combustion system, to reduce pressure pulsations in the air-fuel mixture, and consequently reduce the vibrations of elements in the combustion chamber and in the engine on the whole. Theoretical investigations of the pulsation characteristics of the low emission combustion chamber with the preliminary mixing of air-fuel mixture for the gas turbine engine of 25 MW allowed us to establish that amplitude maximum  pressure pulsations are observed in the paraxial recirculation zone, in the region of secondary air inlets; inside the flame tube in the region of the third and fourth cowlings; on inlet diffuser walls, in the output cross-section of flame tube before the turbine blades; on peripheral swirler blades, in the region  of fuel outflow orifices and in swirler channels. The most efficient reduction of pulsations is observed in the primary combustion zone and the pulsations produced by the central vortex in the mixing zone closer to the chamber output are less efficient.

Біографія автора

Artem Viktorovich Kozlovskyi, Admiral Makarov National University of Shipbuilding

Посилання

Kozlovskiy, A. V. (2015), ²Prognozirovanie termo-akusticheskih harakteristiknizkojemissionnyhkamersgoranijaGTDmetodomtrehmernogo matematicheskogo modelirovanija [Prediction ofthethermo-acoustic characteristicsofgasturbinelow-emission combustion chambers by three-dimensional mathematicalmodelingmethod]², VisnykNTUU²KPI².Serija:Mashynobuduvannja [Prediction of the thermo-acoustic characteristicsofgas turbine low-emissioncombustionchambers by three-dimensional mathematical modeling method], no. 3(75),pp. 25–29, ISSN 2409-5966.

Serbin, S. I. and Mostipanenko, G. B. (2012), ²Doslidzhennja procesiv nestacionarnogo gorinnja v kameri zgorjannja GTD[Investigation of Transient Combustion Process in Gas Turbine Combustor]², Bulletin of NTU"KhPI".Series:Powerandheatengineering processes and equipment, no. 8, pp. 11–16, ISSN 2078-774X.

Serbin, S. I., Mostipanenko, G. B. and Kozlovskiy, A. V. (2012), ²Modeljuvannja procesiv nestacionarnogo gorinnjavnyz'koemisijnij ka-meri zgorjannja gazoturbinnogo dvyguna [Modeling of unsteady combustion processes in gasturbinelow-emission combustion chamber]², Visnik NUK [Modeling of unsteady combustion processes in gas turbine low-emissioncombustionchamber], no. 1, pp. 24–32, ІSSN 2312-9441.

Serbin, S. I., Mostipanenko, G. B., Kozlovskiy, A. V., Vantsovsky, V. G. and Vilkul V. V. (2014), ²Razrabotka metodovraschetaharakteristik nestacionarnogo rabochego processa v nizkojemissionnyh kamerah sgoranijagazoturbinnyhdvigatelej[Developing the Methods Used for the Computation of the Characteristics ofNonstationaryOperating Processes intheLow-Emission Combustion Chambers of Gas Turbine Engines], Bulletin of NTU"KhPI".Series: Power and heatengineeringprocessesandequipment, no. 11(1054), pp. 90–94, ISSN 2078-774X.

Serbin, S. I., Mostipanenko, G. B. and Kozlovskiy, A. V. (2014), ²Investigation of the thermo-acoustic processes inlowemission combustion chamber of gas turbine еngine capacity of 25 MW², Mezhdunarodnyjzhurnalobinnovacijahvsudostroenii²Shipbuilding & marine infastructure², no. 1(1), pp. 127–134.

Serbin, S. I., Mostipanenko, G. B., Kozlovskiy, A. V. and Vilkul V. V. (2014), ²Metody snizhenija intensivnostipul'sacionnogogorenija v kamere sgoranija GTD, rabotajushhej na gazoobraznom toplive [Methods to reducetheintensityofpulsatingcombustionin the gas turbine combustion chamber operating on gaseous fuel]², Nauchno-tehnicheskijzhurnal:²Aviacionno-kosmicheskajatehnika i tehnologija² [Methods to reduce the intensity of pulsatingcombustioninthegas turbinecombustionchamber operating on gaseous fuel], no. 8(115), pp. 84–88, ISSN 1727-7337.

Avvakumov, A. M., Chuchkalov, I. A. and Shhelokov, Ja. M. (1987), Nestacionarnoe gorenie v jenergeticheskih ustanovkah[The unsteady burning in power plants], Nedra, Leningrad, Russia.

Romanovs'kyj, G. F., Serbin S. I. and Patlajchuk, V. M. (2005), Suchasni gazoturbinni agregaty: agregatyvyrobnyctvaUkrai'ny ta Rosii': Navchal'nyj posibnyk [Modern gas turbine units: units manufacturing UkraineandRussia],NationalUniversityofShipbuilding named after Admiral Makarov, Nikolaev, Ukraine.

##submission.downloads##

Опубліковано

2016-06-29

Як цитувати

Serbin, S. I., & Kozlovskyi, A. V. (2016). Increasing the Stability of Combustion Processes in the Combustion Chamber of Gas-Turbine Engine through the Improvement of the Air-Gas Channe. Вісник Національного технічного університету «ХПІ». Серія: Енергетичнi та теплотехнiчнi процеси й устаткування, (9), 65–69. https://doi.org/10.20998/2078-774X.2016.09.09

Номер

Розділ

Енергетичні та теплотехнічні процеси й устаткування