Volodymyr Vladyslavovych Korobko


ABSTRACT Technological systems based on thermoacoustic heat machines (TAHM) are promising for use with low temperature heat sources - waste and renewable. TAHM differs from the mechanical machines because absence of moving parts, ecological safety and high reliability. These TAHM are able to operate from external power sources. It is shown that currently there is no universal theory. These machines are less common and the main disadvantage is their low power. The aim of work is to define the elements of TAHM of low-temperature utilization systems that are currently in need of improvement. Methods for solving - analysis of modern mathematical models and experimental data for generalizing approach synthesis. Results - it is shown that the thermoacoustic theory of Rott-Swift allows you to calculate the possible acoustic power and thermal heat capacity of TA machine, but has significant limitations. Finite Time Thermodynamic model of thermo-acoustic engine takes into account the impact of external sources of thermal energy and heat exchangers design features on the TATM characteristics. This model makes it possible to optimize the parameters of TATM by power or efficiency. By combining different models several issues concerning the TA systems design can be solved, also could be designed the requirements for the design of TATM heat exchangers. Conclusions - for the design of such systems it is necessary to conduct additional studies for the development of special heat transfer surfaces and for providing the uniform temperature field.

Повний текст:

PDF (English)


Rott, N. (1980), ²Thermoacoustics², Adv. Appl. Mech., no. 20(135), pp. 250–272.

Swift, G. W. (2002), Thermoacoustic: A unifying perspective for some engines and refrigerators, American Inst. of Physics, US.

De Blok, K. (2008), ²Low operating temperature integral thermo acoustic devices for solar cooling and waste heat recovery², Acoustic-2008, International conference, Paris, pp. 18–24.

Korobko, V. V. (2014), ²Mozhlyvi shlyakhy vykorystannya termoakustychnykh teplovykh mashyn v systemakh SEU [The possible uses of thermoacoustic heat engines in MPP systems]², Naukovyy visnyk Khersons'koyi derzhavnoyi mors'koyi akademiyi [Scientific Bulletin of Kherson State Maritime Academy], no. 2(11), pp. 69–76, ISSN. 2077-3617.

Wu, F., Wu, C., Guo, F., Li, Q. and Chen, L. (2003), ²Optimization of a Thermoacoustic Engine with a Complex Heat Transfer Exponent², The Int. J. Entropy, no. 5, pp. 444–451.

Korobko, V. V. and Moskovko, A. A. (2014), ²Vlyyanye yntensyvnosty teploobmena na kharakterystyky termoakustychnkykh dvyhateley [Impact of heat transfer rate on the characteristics of the thermoacoustic engines] ², Suchasni informatsiyni tekhnolohiyi na transporti: materialy. VI Mizhnar. nauk.- prakt. konf. (MINTT-2014) [Modern information technologies in transport], Kherson, pp. 257–260.

Korobko, V. V. (2013) ²Yssledovanye protsessov teploobmena y hydrodynamyky v эlementakh termoakustycheskykh dvyhateley [Investigation of heat transfer and hydrodynamics in thermoacoustic engine components] ², Avyatsyonno-kosmycheskaya tekhnyka i tekhnolohyya [Aerospace Technic and Technology], no. 8 (105), pp. 123–130, ISSN 1727-7337.

Panhuis, P.H.M.W. in’t. (2009), Mathematical Aspects of Thermoacoustics, Technische Universiteit Eindhoven, Eindhoven, Netherland. 2009. – 190 p.

Пристатейна бібліографія ГОСТ

1    Rott, N. Thermoacoustics [Text] / N. Rott // Adv. Appl. Mech. – 1980. – № 20(135). – P. 250–272.


2    Swift, G. W. Thermoacoustic: A unifying perspective for some engines and refrigerators [Text] / G. W. Swift. – American Inst. of Physics, 2002. – 300 p.


3    De Blok, K. Low operating temperature integral thermo acoustic devices for solar cooling and waste heat recovery [Text] / K. De Blok // Acoustic-2008, International conference. – Paris, 2008. – P. 18–24.


4    Коробко, В. В. Можливі шляхи використання термоакустичних теплових машин в системах СЕУ [Текст] / В. В. Коробко // Науковий вісник Херсонської державної морської академії. – Херсон : ХДМА, 2014. – № 2(11). – С. 69–76. – ISSN 2077-3617.


5    Wu, F. Optimization of a Thermoacoustic Engine with a Complex Heat Transfer Exponent [Text] / F. Wu, C. Wu, F. Guo, Q. Li, L. Chen // The Int. J. Entropy. – 2003. – № 5. – P. 444–451.


6    Коробко, В. В. Влияние интенсивности теплообмена на характеристики термоакустичнких двигателей / В. В. Коробко, А. А. Московко // Сучасні інформаційні технології на транспорті [Текст] : матеріали. VI Міжнар. наук.-практ. конф. (MINTT-2014), Херсон. 2014. – С. 257–260.


7    КоробкоВ. В. Исследование процессов теплообмена и гидродинамики в элементах термоакустических двигателей [Текст] / В. В. Коробко // Авиационно-космическая техника и технология. – 2013. – № 8(105). – С. 123–130. – ISSN 1727-7337.


8    Panhuis, P.H.M.W. in’t. Mathematical Aspects of Thermoacoustics [Text] / P.H.M.W. in’t Panhuis. – Eindhoven : Technische Universiteit Eindhoven, Netherland, 2009. – 190 p.