DOI: https://doi.org/10.20998/2078-774X.2016.10.05

COMPLEX MODELLING DRING PLANT IN THE COMPOSITION OF THE COGENERATION SYSTEM

Eugene Evstafievna Chaikovskaya

Анотація


 The paper presents the architecture of a cogeneration system, the foundation of which is the dynamic subsystem. It includes a co-generation plant, drying plant, air heating heat exchanger, an air fan. Other units are units of discharge, charge, assessment of functional efficiency, which are consistent with the dynamic interaction subsystem. It is proposed an analytical evaluation of changes in the moisture content of the air in the drying chamber at an air temperature measured at the outlet of the drying chamber. The structural scheme of an complex modeling dryer is developed. Using the cyclic structure set functioning levels of dryer air temperature change at the inlet of the heat exchanger and heating the air leaving the heat exchanger which corresponds to a change of the equilibrium moisture content of wood in the drying chamber. The air flow entering the air-heating heat exchanger which corresponds to the level functioning the dryer is defined. The valid values change in the moisture content of the air in the drying chamber obtained They allow to change the flow rate of air supplied to the air preheating heat exchanger when the air temperature measured at the outlet of the drying chamber. Changing the air blower motor speed for changes in air flow provides thermal drying treatment in the drying chamber. Coordination of temperature and aerodynamic regimes of drying wood allows, for example, the production of 5.8 thousand tons of wood pellets per year to provide 860 apartments measuring 120 m2 pellet fuel that given the frequency regulation on electric air fan drying materials, provides gain saving money using pellet fuel for heating and hot water to 40% and reduce the cost of power generation and heat within 20%-30% in  in the conditions of  the cogeneration system

 


Повний текст:

PDF (English)

Посилання


Heletuha, H. H., Gelieznaia, T. A., Kuchtruk, P. P., Olienic, Е. N. and Triboi, А. B. (2015), ²Biojenergetika v Ukraine: sovremennoe sostojanie i perspektivy razvitija. Chast' 2 [Bioenergy in Ukraine: Current State and Prospects for Development. Part 2.]², Promyshlennaja teplotehnika [Industrial Heat Engineering], no. 3(37), pp. 65–73, ISSN 0204-3602.

Chaikovskaya, E. E. (2015), ²Rozrobka energozberigajuchoi' tehnologii' funkcionuvannja biogazovoi' ustanovky u skladi ko-generacijnoi' systemy [Development of energy-operation of biogas plant as part of a cogeneration system]², Vostochno-Evropejskij zhurnal peredovyh tehnologij [Eastern-European Journal of Enterprise Technologies], no. 3/8(75), pp. 47–53, ISSN 1729-3774, doi: 10.15587/1729-4061.2015.442522.

Trohin, A. H., Moisiev, V. F., Telnov, I. A. and Zavinski, S. I. (2010), ²Razvitie processov i oborudovanija dlja proizvodstva toplivnyh briketov iz biomassy [Development of processes and equipment for the production of fuel pellets from biomass]², Vostochno-Evropejskij zhurnal peredovyh tehnologij [Eastern-European Journal of Enterprise Technologies], no. 8/45(3), pp. 36–40, ISSN 1729-3774.

Bhattarai Sujala, Jae-Heun Oh, Seung-Hee Euh, Dae Hyun Kim and Liang Yu (2014), ²Simulation Study for Pneumatic Conveying Drying of Sawdust for Pellet Production², Drying Technology, no. 32, pp. 1142–1156, ISSN 0737-3937, doi: 10.1080/07373937.2014.884575.

Jussi Laurila, Havimo Mikko, Lauhanen Risto (2014), ²Compression drying of energy wood², Fuel Processing Technology, no. 124, pp. 286–289, ISSN 0378-3820, doi: 10.1016/j.fuproc.2014.03.016.

Liu Yuping, Aziz Muhammad, Kansha Yasuki, Bhattacharya Sankar, Tsutsumi Atsushi (2014), ²Application of the self-heat recuperation technology for energy saving in biomass drying system², Fuel Processing Technology, no. 117, pp. 66–74, ISSN 0378-3820, doi: 10.1016/j.fuproc.2013.02.007.

Hai-tao Wang, He-ming Jia (2013), ²Study of Immune PID Controller for Wood Drying System², 2013 International Conference on Communication Systems and Network Technologies, pp. 827–831, ISSN 1-4673-5603, doi: 10.1109/csnt.2013.176.

Tian Zhongfu, Li Yuehua (2013), ²Research on control system of wood drying based on BP Neural Network², Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC), no. 36–38, ISBN 4-4799-2564-3, doi: 10.1109/mec.2013.6885046.

Patrick Perre, Roger Keey (2014), ²Drying of Wood: Principles and Practices Handbook of Industrial Drying², no. 797–846, ISBN 978-1-4665-9665-8, doi: 10.1201/b17208-44.

Chaikovskaya, E. E. (2015), ² Rozrobka metodu pidtrymky funkcionuvannja sushyl'noi' ustanovky u skladi kogeneracijnoi' systemy [Development of methods suppot the operation of the drying plant composed of cogeneration system]², Tehnologicheskij audit i rezervy proizvodstva [Technological audit and production of reserves], no. 5/7(25), pp. 62–67, ISSN 2312-8372, doi: 10.15587/2312-8372.2015.51520.


Пристатейна бібліографія ГОСТ


1    Гелетуха, Г. Г. Биоэнергетика в Украине: современное состояние и перспективы развития. Часть 2 [Текст] / Г. Г. Гелетуха, Т. А. Железная, П. П. Кучерук, Е. Н. Олейник, А. В. Трибой // Промышленная теплотехника. – 2015. – Т. 37, № 3. – С. 65–73. – ISSN ISSN 0204-3602.

 

2    Чайковська, Є. Є. Розробка енергозберігаючої технології функціонування біогазової установки у складі когенераційної системи [Текст] / Є. Є. Чайковська // Восточно-Европейский журнал передовых технологий. –2015. – Т. 3, № 8(75). – С. 47–53. – ISSN ISSN 1729-3774. – doi: 10.15587/1729-4061.2015.442522.

 

3    Трошин, А. Г. Развитие процессов и оборудования для производства топливных брикетов из биомассы [Текст] / А. Г. Трошин, В. Ф. Моисеев, И. А. Тельнов, С. И. Завинский // Восточно-Европейский журнал передовых технологий. – 2010. – № 8/45(3). – С. 36–40. – ISSN ISSN 1729-3774.

 

4    Bhattarai, Sujala. Simulation Study for Pneumatic Conveying Drying of Sawdust for Pellet Production [Text] / Sujala Bhattarai, Jae-Heun Oh, Seung-Hee Euh, Dae Hyun Kim, Liang Yu // Drying Technology. – 2014. – Vol. 32. – P. 1142–1156. – ISSN ISSN 0737-3937 – doi: 10.1080/07373937.2014.884575.

 

5    Laurila, Jussi. Compression drying of energy wood [Text] / Jussi Laurila, Havimo Mikko, Lauhanen Risto // Fuel Processing Technology. – 2014. – Vol. 124. – P. 286–289. – ISSN ISSN 0378-3820. – doi: 10.1016/j.fuproc.2014.03.016.

 

6    Yuping, Liu. Application of the self-heat recuperation technology for energy saving in biomass drying system [Text] / Liu Yuping, Aziz Muhammad, Kansha Yasuki, Bhattacharya Sankar, Tsutsumi Atsushi // Fuel Processing Technology. – 2014. – Vol. 117. – P. 66–74. – ISSN ISSN 0378-3820. – doi: 10.1016/j.fuproc.2013.02.007.

 

7    Wang, Hai-tao. Study of Immune PID Controller for Wood Drying System [Text] / Hai-tao Wang, He-ming Jia // 2013 International Conference on Communication Systems and Network Technologies. – 2013. – P. 827–831. – ISSN ISBN 1-4673-5603-9. – doi: 10.1109/csnt.2013.176.

 

8    Zhongfu, Tian. Research on control system of wood drying based on BP Neural Network [Text] / Tian Zhongfu, Li Yuehua // Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer (MEC). – 2013. – P. 36–38. – ISBN 4-4799-2564-3. – doi: 10.1109/mec.2013.6885046.

 

9    Perre, Patrick. Drying of Wood: Principles and Practices [Text] / Patrick Perre, Roger Keey // Handbook of Industrial Drying. – 2014. – P. 797–846. – ISSN ISBN 978-1-4665-9665-8. – doi: 10.1201/b17208-44.

 

10  Чайковська, Є. Є. Розробка методу підтримки функціонування сушильної установки у складі когенераційної системи [Текст] / Є. Є. Чайковська // Технологический аудит и резервы производства. –2015. – № 5/7(25). – С. 62–67. – ISSN ISSN 2312-8372. – doi: 10.15587/2312-8372.2015.51520.