Heat Recovery System with the Embedded Thermosiphon-Type Heat-Exchange Apparatus





It is proposed to use the heat-exchange apparatus whose surface was formed by two-phase siphons of a closed type for the system of deep recovery of the heat of escaping gases of the boiler with the steam capacity of 0.278 kg/s. To protect the gas escape channel from the damage the by-pass was arranged for the portion of combustion gases passing by the heat-exchange apparatus that allows us to raise the temperature of escaping gases above the dew-point temperature. Due to the fact that the heat-exchange apparatus uses the physical heat of gases and also the heat released during the condensation of water steam from the combustion products of natural gas its surface is subdivided in two stages that use different liquids as an intermediate heat carrier for the thermosiphons, in particular the stage without the steam condensation uses water and the stage with the steam condensation uses the water-ammonia mixture. This required some improvement of the known methods of heat calculation for the thermosiphon-type heat exchange apparatus. Computing studies were carried out using the software developed by the authors. The investigation allowed us to establish that in the case of maintenance of the fuel rate at a fixed level the heat recovery system allows us to provide the steam production at a capacity of 0.278 kg/s and also to additionally heat 0,5049 kg/s of the heating system water in the hot water supply system in the range of 10 °C to 65 °C and also to generate the condensate at a capacity of 0.0247 kg/s. The comparison of heat-exchange apparatuses of a thermosiphon type and coil type showed that their structures are comparable with regard to heat engineering and overall indicators.

Біографії авторів

Aleksandr Vyacheslavovich Yefimov, National Technical University "Kharkiv Polytechnic Institute"

Aleksandr Leonidovich Goncharenko, National Technical University "Kharkiv Polytechnic Institute"


(2013), “Energetichna strategija' Ukrai'ny na period do 2030 roku : Rozporjadzhennja KM Ukrai'ny vid 24.07.2013,№1071”,available at: http://npgu.net/Strategiya.doc (Accessed 25 December 2015).

Dolinskiy, A. A., et al. (2009), “Osnovni polozhennja koncepcii' Nacional'noi' strategii' teplozabezpechennjanaselenyhpunktivUkrai'ny [The main provisions of the concept of National strategy of heat supplyofsettlementsofUkraine]”,Promyshlennajateplotehnika, vol. 31, no. 4, pp. 68–77, ISSN 0204-3602.

Aronov, I. Z. (1990), Kontaktnyj nagrev vody produktami sgoranija prirodnogo gaza [Contact heating water by productsofcombustion of natural gas], Nedra (Leningradskoe otdelenie), Leningrad, Russia.

Sulliven, R. E. (1985), “The Timken Company's Canton plant utilizes a condensing heat exchanger to recover boiler stackheatto preheat makeup water”, II ASHRAE J, vol. 27, no. 3, pp. 73–75.

Fialko, N. M., et al. (2008), “Jeffektivnost' sistem utilizacii teploty othodjashhih gazov jenergeticheskih ustanovokrazlichnogotipa [The efficiency of heat recovery systems flue gases of power plants of varioustypes]”.Promyshlennajateplotehnika,no.3,pp. 68–76.

Garjaev, A. B. (2010), “Sovershenstvovanie metodov rascheta apparatov i ustanovok dlja glubokoj utilizacii teplotyvlazhnyhgazov i razrabotka mer po povysheniju jeffektivnosti ee ispol'zovanija [Improving methodsofcalculatingmachinesandinstallationsfor deep wet gas heat recovery and the development of measures to improvetheefficiencyofits use]”,Abstractof D. Sc. dissertation, Moscow, Russia.

Efimov, A. V. and Goncharenko, A. L. (2010), “Matematicheskaja model' sistemy “kotel–teploutilizator”. [Mathematical modelofthe system “boiler-heat exchanger”]”, Bulletin of NTU “KhPI”, vol. 21, pp. 76–87.

Efimov, A. V., Goncharenko, A. L. and Goncharenko, L. V. (2009), “Sovershenstvovanie metoda teplovogoraschetakondensatsionnogo teploutilizacionnogo apparata poverhnostnogo tipa, ustanavlivajemogozakotelnoi'ustanovkoi'[Improvementinthe method of calculating the heat of condensation heat recovery unitofthe surfacetypeoftheboiler system installed]”, Energetika, no. 1, pp. 64–73.

Bezrodnyj, M. K., Pioro, I. L. and Kostuꞌk, T. O. (2003), Processy perenosa v dvohfaznyh termosifonnyh sistemah[Transportprocesses in two-phase thermosiphon systems], Fakt, Kiev.

Bezrodnyj, M. K., Volkov, S. S. and Podgoreckiy, V. M. (1987), “K optimizacii termosifonnyh utilizatorov teploty [Byoptimizingthe thermosiphon heat recovery boilers]”, Promyshlennaja energetika, no. 4, pp. 46–48.

Pioro, I. L. (1991), Effektivnye teploobmenniki s dvuhfaznymi termosifonnami [Efficient heat exchangers with two-phasethermosyphon], Naukova dumka, Kiev, Russia.

Vasilꞌev, L. L. (1981), Teploobmenniki na teplovyh trubah [Heat exchangers in the heat pipes], Nauka i tehnika, Minsk,Belarus.

Jouhara, H. and Robinson A. J. (2010), “Experimental investigation of small diameter twophase closedthermosyphonscharged with water, FC-84, FC-77 and FC-3283”, Applied Thermal Engineering, vol. 30, pp. 201–211.

Gavrilov, A. F. (1966), Raschet vozduhopodogrevatelja s promezhutochnym teplonositelem [Calculation of the air heaterwithintermediate heat carrier]. Teploenergetika, no.8, pp. 92−93.

Mochan, S. I. (ed.) (1998), Teplovoj raschet kotlov (normativnyj metod) [Thermal design of boilers (standard method)],St.Petersburg, Russia.




Як цитувати

Yefimov, A. V., & Goncharenko, A. L. (2016). Heat Recovery System with the Embedded Thermosiphon-Type Heat-Exchange Apparatus. Вісник Національного технічного університету «ХПІ». Серія: Енергетичнi та теплотехнiчнi процеси й устаткування, (10), 30–37. https://doi.org/10.20998/2078-774X.2016.10.04



Енергетичні та теплотехнічні процеси й устаткування