DOI: https://doi.org/10.20998/2078-774X.2016.10.19

On the Data of Aerodynamic Computations of Axiannular Divergent Cones

Valery Petrovich Subotovich, Yuriy Alexeevich Yudin, Alexander Yuriyovich Yudin, Sergey Alexsandrovich Temchenko

Анотація


Comparative design investigations of axiannular divergent cones were carried out using the CFD software. Turbulence models built-in into the CFD–software were used for the computations, in particular Spalart-Allmaras (S-A), k–w Shear Stress Transport (k–w SST), V2F. The aperture angle of the external by-pass of cones varied in the range of
a = 11°–36°, while the cone expansion degree varied as n = 2–4. The data of CFD computations were compared with the known experimental curve obtained by Klein and confirmed by Zariankin, which divides the plane (a–n) into two regions: unseparated flow and separated flow regions. The region above this curve represents the separated flow in the cone at any combination of parameters (a–n), and the region below this curve represents the unseparated flow. The computations done using the CFD-software for axiannular divergent cones in the studied range of the relationships of geometric parameters
(a–n) showed  that the use of k–ω SST and V2F models results in the flow separation in the cones situated in the unseparated flow region, which runs counter to the experimental data, and the use of the turbulence model  S-A provided the unseparable flow in the region below the experimental Klein curve and resulted in the flow separation in the region below this curve. Design investigations showed that the turbulence model (Spalart-Allmaras (S-A)) provides an opportunity for the satisfactory simulation of unseparable and separable flows in the cones of this type.


Повний текст:

PDF (English)

Посилання


Deich, M. E. and Zaryankin A. E. (1970), Gazodinamika diffuzorov i vyhlopnyh patrubkov turbomashin [Diffusers and exhaust chamber turbomachinery gas dynamics], Jenergija [Energy], Moscow, Russia.

Dorfman, A. S., Nazarchuk, M. M., Polish, N. I. and Saikovsky, M. I. (1960), Ajerodinamika diffuzorov i vyhlopnyh patrubkov turbomashin [Aerodynamics of the diffusers and exhaust chamber turbomachinery], Izd. AN USSR, Moscow, Russia.

Mingazov, B. G. and Davletshin, I. S. (2011), “Vybor modelej turbulentnosti i parametrov setki dlja raschjota techenij v diffuzornyh kanalah [The choice of turbulence models and grid parameters for the calculation of flows in diffuser ducts]”, Izvestija Vuzov. Aviacionnaja tehnika [Proceedings of the universities. Aviation equipment], Kazan, Russia, no. 4, pp. 24–28.

Buice, C. U. and Eaton, J. K. (2000), “Experimental investigation of flow through an asymmetric plane diffuser”, Journal of Fluids Engineering, vol. 122, no. 2, pp. 433–435.

Azad, R. S. (1996), “Turbulent flow in a conical diffuser”, Experimental Thermal and Fluid Science, vol. 13, no. 4, pp. 318–337.

Obi, S., Aoki, K. and Masuda, S. (1995), “Experimental and computational study of turbulent separating flow in an asymmetric plane diffuser”, Proc. of the 9th International Symposium on Turbulent Shear Flows, Japan, 1993, Springer-Verlag, Berlin ; N.Y., pp. 305-1–305-4.

Garbaruk, A. V., Strelets, M. H. and Chur, M. L. (2012), Modelirovanie turbulentnosti v raschjotah slozhnyh techenij [Modeling of turbulence in the calculation of complex flows], Izd-vo Politehn. un-ta [Publishing Polytechnic University], St. Petersburg, Russia.

Zaryankin, A. E., Paramonov, A. N., Grigoriev, E. Yu., Buzulutsky, D. E. and Khazov, P. S. (2014), “Novyj sposob upravlenija otryvom potoka rabochih sred v shirokougol'nyh diffuzorah parovyh i gazovyh turbin [A new method of controlling the flow separation of the operating environment in wide-angle diffusers of steam and gas turbines]”, Vestnik Ivanovskogo gosudarstvennogo jener-geticheskogo universiteta [Bulletin of Ivanovo state power University], no. 5, pp. 5–10, ISSN 2072-2672, doi: 10.17588.


Пристатейна бібліографія ГОСТ


1    Дейч, М. Е. Газодинамика диффузоров и выхлопных патрубков турбомашин [Текст] / М. Е. Дейч, А. Е. Зарянкин. – М. : Энергия. – 1970. – 384 с.

 

2    Дорфман, А. Ш. Аэродинамика диффузоров и выхлопных патрубков турбомашин [Текст] / А. Ш. Дорфман, М. М. Назарчук, Н. И. Польский, М. И. Сайковский. – М. : Изд. АН УССР. – 1960. – 292 c.

 

3    Мингазов, Б. Г. Выбор моделей турбулентности и параметров сетки для расчёта течений в диффузорных каналах [Текст] / Б. Г. Мингазов, И. С. Давлетшин // Известия Вузов. Авиационная техника. – Казань, 2011. – № 4. – С. 24–28.

 

4    Buice, C. U. Experimental investigation of flow through an asymmetric plane diffuser [Text] / C. U. Buice, J. K. Eaton // Journal of Fluids Engineering. – 2000. – Vol. 122, № 2. – P. 433–435.

 

5    Azad, R. S. Turbulent flow in a conical diffuser [Text] / R. S. Azad // Experimental Thermal and Fluid Science. – 1996. – Vol. 13, № 4. – P. 318–337.

 

6    Obi, S. Experimental and computational study of turbulent separating flow in an asymmetric plane diffuser [Text] / S. Obi, K. Aoki, S. Masuda // Proc. of the 9th International Symposium on Turbulent Shear Flows, Japan, 1993. – Berlin ; N.Y. : Springer-Verlag, 1995. – P. 305-1–305-4.

 

7    Гарбарук, А. В. Моделирование турбулентности в расчётах сложных течений [Текст] : учеб. пособие / А. В. Гарбарук, М. Х. Стрелец, М. Л. Шур. – СПб : Изд-во Политехн. ун-та, 2012. – 88 с.

 

8    ЗарянкинА. Е. Новый способ управления отрывом потока рабочих сред в широкоугольных диффузорах паровых и газовых турбин [Текст] / А. Е. Зарянкин, А. Н. Парамонов, Е. Ю. Григорьев, Д. Е. Бузулуцкий, П. С. Хазов // Вестник Ивановского государственного энергетического университета. – 2014. – № 5. – С. 5–10. – ISSN 2072-2672. – doi: 10.17588.