The Interactive Environment Architecture for Thermal-hydraulic Systems Simulation

Автор(и)

  • Yuriy Nikolaevich Govorushchenko National Technical University “Kharkov Polytechnic Institute”, Ukraine

DOI:

https://doi.org/10.20998/2078-774X.2016.09.01

Анотація

The description of the principles of the multi-purpose graphical environment construction for thermal-hydraulic systems simulation is given. The functional capabilities of the specialized graphical editors for schemes and their components drawing are listed. The features of the software application for some subject areas, such as heat cycles of steam and gas turbines, turbomachinery flow paths, steam distribution nozzle systems, as well as hydraulic and pneumatic networks are presented. A brief comparison of the functionality of the developed programs with existing analogues is performed. It has been shown that the described architecture is particularly effective in combination with the use of object-oriented iteration-recursive algorithm for thermal-hydraulic systems simulation.

Посилання

Cycle-Tempo (2007). Technical Notes. A program for thermodynamic modeling andoptimizationofenergyconversionsystems.Delft University of Technology.

Flownex simulation environment (2015), “Nuclear SNR webinar invitation”, available at: http://www.flownex.com,(Accessed19 December 2015).

Rossman, L. A. (2000), “EPANET 2 Users Manual”, available at: http://nepis.epa.gov/Adobe/PDF/P1007WWU.pdf,(Accessed15 December 2015)

Build Interactive Diagrams (2015), “Interactive diagrams for the Web”, available at: http://www.nwoods.com, (Accessed09December 2015).

Lykhvar, N. V., Govorushchenko, Yu. N. and Jakovlev, V. A. (2003), “Simulation of thermal power plants usinginteractivescheme graphics”, Probl. Mashinostrojenija, no. 1, pp. 30–40.

Boiko, A. V., Govorushchenko, Yu. N., Usaty, A. P. and Rudenko, A. S. (2009), “The integration of the procedure forcreationand calculation of gas turbine schemes in the CAD "Turboagregat"”, Bulletin of NTU"KhPI".Series:Powerandheatengineering processes and equipment, no. 3, pp. 111–115, ISSN 2078-774X.

Rudenko, A. S. (2011), “Multiparameter optimization of flow parts of the axial turbine according to the operatingmodes”,Ph.D. Thesis, Thurbomachine and Turbo-installation, NTU “KhPI”, Kharkov, Ukraine.

Tiny C Compiler (2009), News [Online], available at: http://bellard.org/tcc/ (Accessed 15 January 2016).

Gas turbine performance... (2016), “Gas turbine performance”, available at: http://www.gasturb.de, (Accessed 05January2016).

Moroz, L., Govorushchenko, J., Pagur, P. (2006), “A Uniform Approach to Conceptual Design of AxialTurbine/CompressorFlow Path”, The Future of Gas Turbine Technology. 3rd International Conference, Brussels, Belgium, 11-12 October 2006.

Boiko, A. V. and Govorushchenko, Yu. N. (1989), Osnovy teorii optimal'nogo proektirovanija protochnoj chasti osevyh turbin[Fundamentals of the theory of optimal design of the axial turbine flow path], Vyshcha shkola, Kharkov, Ukraine.

Elmegaard, B. (2003), “The Engineer‘s “DNA by Example””, Proceedings of EGOS, Copenhagen, Denmark, June 30 - July 2.

Abramov, N. N., Pospelova, M. M., Somov, M. A. et al. (1983), Raschet vodoprovodnyh setej [The calculation of watersupplynetworks], Strojizdat, Moscow, Russia.

Boiko, A. V., Govorushchenko, Yu. N. ans Usaty, A. P. (2009), “The model of the joint calculation of the nozzlesteamdistribution and flow path of the axial turbine CAD "Turboagregat"”, Energetika ta electrifikacija, no. 12.

Govorushchenko, Yu. N. (2016), “Object-oriented iteratively-recursive algorithm for thermal-hydraulic systemsmodeling”,Bulletin of NTU “KhPI’. Series: Power and heat engineering processes and equipment, no. 8(1180), pp. 16–21,ISSN 2078-774X,doi: 10.20998/2078-774X.2016.08.02.

##submission.downloads##

Опубліковано

2016-10-03

Як цитувати

Govorushchenko, Y. N. (2016). The Interactive Environment Architecture for Thermal-hydraulic Systems Simulation. Вісник Національного технічного університету «ХПІ». Серія: Енергетичнi та теплотехнiчнi процеси й устаткування, (9), 6–12. https://doi.org/10.20998/2078-774X.2016.09.01

Номер

Розділ

Енергетичні та теплотехнічні процеси й устаткування