DOI: https://doi.org/10.20998/2078-774X.2017.11.05

Simulating the Processes of Nonstationary Heat Conductivity in the Heat-Insulated Cylindrical Wall of a Boiler Drum

Alexander Yefimov, Yurii Volodymyrovych Romashov, Valerii Kavertsev

Анотація


This scientific paper is devoted to the investigation of nonstationary axisymmetric heat conductivity in the cylindrical heat-insulated wall of a boiler drum. Consideration was given to the cases of an abrupt change in the temperature of internal surface of the boiler, temperature fluctuations on the internal drum surface near the prescribed average value and also an abrupt change in the temperature of internal drum surface with subsequent fluctuations near a new average value embracing typical states peculiar for the stationary and nostationary boiler operating modes. The investigations carried out showed that abrupt changes in the temperature of internal drum surface during some seconds may result in temperature fields, in which the temperature difference of internal and external surfaces is equal to a change in the temperature of internal surface. It takes the drum wall of 16 mm thick 30 seconds to align the temperature field after an abrupt increase in the temperature of internal surface.  Harmonic temperature fluctuations on the internal surface create the temperature field in the drum wall with the temperature difference between the internal surface and the external surface a little bit higher then the half amplitude of vibrations in temperature. In the future, we plan to study mechanical stresses in the boiler drum wall caused by the internal pressure and nonstationary temperature fields considered in this scientific paper. In addition, we will study the influence produced by the temperature relationship for heat conductivity properties of the structural material on the nonuniform distribution of temperature field in the drum wall thickness.

Повний текст:

PDF (Русский)

Посилання


Yefimov, A., Romashov, Yu. and Kavertsev, V. (2016), “Temperature Stresses and Optimum Ratio of the Inner and Outer Radii of the Cylindrical Parts of Pressure Vessels of Steam Generating Systems”, Bulletin of NTU "KhPI". Series: Power and heat engineering processes and equipment, no. 9(1181), pp. 108–112, ISSN 2078-774X, doi: 10.20998/2078-774X.2016.09.16.

Mertens, N., Alobaid, F., Starkloff, R., Epple, B. and Kim, H.-G. (2015), "Comparative investigation of drum-type and once-through heat recovery steam generator during start-up", Applied Energy, Vol. 144, pp. 250–260, ISSN 0306-2619, doi: 10.1016/j.apenergy.2015.01.065.

Wang, X., Wang, G., Chen, H. and Zhang, L. (2017), "Real-time temperature field reconstruction of boiler drum based on fuzzy adaptive Kalman filter and order reduction", International Journal of Thermal Sciences, Vol. 113, pp. 145–153, ISSN 1290-0729, doi: 10.1016/j.ijthermalsci.2016.11.017.

Taler, J., Dzierwa, P., Taler, D. and Harchu, P. (2015), "Optimization of the boiler start-up taking into account thermal stresses", Energy, Vol. 92, Part 1, pp. 160–170, ISSN 0360-5442, doi: 10.1016/j.energy.2015.03.095.

Holman, J. P. (2010), Heat transfer, McGraw-Hill Companies Inc., New York, ISBN 978–0–07–352936–3.

Tannehill, J. C., Anderson, D. A. and Pletcher, R. H. (1997), Computational fluid mechanics and heat transfer, Taylor & Francis, Washington, DC.

Fletcher, C. A. J. (1988, 1991), Computational techniques for fluid dynamics 1 Fundamental and General Techniques, Springer-Verlag, Berlin-Heidelberg.

Butcher, J. C. (1996), "A history of Runge-Kutta methods", Applied numerical mathematics, Vol. 20, pp. 247–260.

Hoffman, J. D. and Frankel, S. (2001), Numerical Methods for Engineers and Scientists, Marcel Dekker Inc., New York-Basel.


Пристатейна бібліографія ГОСТ


1    Ефимов, А. В. Температурные напряжения и оптимальное отношение внутреннего и наружного радиусов цилиндрической части сосудов давления парогенерирующих установок / А. В. Ефимов, Ю. В. Ромашов, В. Л. Каверцев // Вісник НТУ «ХПІ». Серія: Енергетичні та теплотехнічні процеси й устаткування. – Харків : НТУ «ХПІ», 2016. – № 9(1181). – С. 108–112. – Бібліогр.: 12 назв. – ISSN 2078-774X. – doi: 10.20998/2078-774X.2016.09.16.

 

2    Mertens N. Comparative investigation of drum-type and once-through heat recovery steam generator during start-up / N. Mertens, F. Alobaid, R. Starkloff, B. Epple, H.-G. Kim // Applied Energy. – 2015. – Vol. 144. – P. 250–260. – ISSN 0306-2619. – doi: 10.1016/j.apenergy.2015.01.065.

 

3    Wang X. Real-time temperature field reconstruction of boiler drum based on fuzzy adaptive Kalman filter and order reduction / X. Wang, G. Wang, H. Chen, L. Zhang // International Journal of Thermal Sciences. – 2017. – Vol. 113. – P. 145–153. – ISSN 1290-0729. – doi: 10.1016/j.ijthermalsci.2016.11.017.

 

4    Taler J. Optimization of the boiler start-up taking into account thermal stresses / J. Taler, P. Dzierwa, D. Taler, P. Harchut // Energy. – 2015. – Vol. 92, Part 1. – P. 160–170. – ISSN 0360-5442. – doi: 10.1016/j.energy.2015.03.095.

 

5    Holman J. P. Heat transfer / J. P. Holman. – New York: McGraw-Hill Companies, Inc., 2010. – 758 p. – ISBN 978–0–07–352936–3.

 

6    Tannehill J. C. Computational fluid mechanics and heat transfer / J. C. Tannehill, D. A. Anderson, R. H. Pletcher. – Washington, DC: Taylor & Francis, 1997. – 792 p.

 

7    Fletcher C. A. J. Computational techniques for fluid dynamics 1 Fundamental and General Techniques / C. A. J. Fletcher. – Berlin-Heidelberg: Springer-Verlag, 1988, 1991. – 404 p.

 

8    Butcher J. C. A history of Runge-Kutta methods / J. C. Butcher // Applied numerical mathematics. – 1996. – Vol. 20. – P. 247–260.

 

9    Hoffman J. D. Numerical Methods for Engineers and Scientists / J. D. Hoffman, S. Frankel. – New York-Basel: Marcel Dekker, Inc., 2001. – 825 p.