DOI: https://doi.org/10.20998/2078-774X.2017.11.14

Control Working Ability of the Cogeneration System on Pellet Fuel

Eugene Evstafievna Chaikovskaya

Анотація


The proposed architecture of the cogeneration system, which is the basis integrated dynamic subsystem – cogeneration plant, heat exchanger secondary circuit heating local water, drying plant, heat exchanger heating the air, the air blower and blocks a charge, discharge, assessment of functional performance that are agreed upon interaction with dynamic subsystem. Complex mathematical modeling of the dynamics of the second circuit of the heat exchanger cogeneration system provides the ability to define tolerances to temperature change local water levels established for the operation. A complex mathematical and logical modeling efficiency cogeneration control system for obtaining functional evaluation of local water temperature changes. Block diagram of temperature maintenance of local water-level decision-making to determine the final information on the decision to change the number plates of the heat exchanger by comparing the temperature of the gases at the inlet to the heat exchanger of the second circuit cogeneration system, measured from the reference value. The proposed integrated system of support for local water temperature for measuring the temperature of gases and return water temperature at the inlet to the heat exchanger of the second circuit of the cogeneration system. Deciding to change the number plate heat exchanger allows to maintain the ratio of production of electricity and heat using changes of rotational speed of the electric fan of air to change the air flow supplied to the heater for drying wood. This approach allows, for example, in terms of functioning cogeneration system capacity of 115 kW reduce the cost of energy produced (20–30) %.


Повний текст:

PDF

Посилання


Heletuha, H. H., Gelieznaia, T. A., Kuchtruk, P. P., Olienic, Е. N. and Triboi, А. B. (2015), "Bioenergetika v Ukraine : sovremennoe sostojnie i perspective razvitija. Chast’ 2 [Bioenergy in Ukraine: Current State and Prospects for Development. Part 2]", Promyshlennaja teplotechnika [Industrial Heat Engineering], No. 3(37), pp. 65–73, ISSN 0204-3602.

Chaikovskaya, E. E. (2016), "Rozrobka energozberigajuchoi technologii pidtrimki bidizelnoi ustanovki u skladi kogeneracijnoi sistemy [The development of energy-saving technology support operation of biodiesel plant of the composition of cogeneration system]", Vostochno-Evropejskij zhurnal peredovich technologij [Eastern-European Journal of Enterprise Technologies], No. 1/8(79), pp. 4–11, ISSN 1729-3774, doi: 10.15587/1729-4061.2016.59479.

Trohin, A. H., Moisiev, V. F., Telnov, I. A. and Zavinski, S. I. (2010), "Razvije processov I oborudovanij dlja proizvodstva toplivnih briketov iz biomassy [Development of processes and equipment for the production of fuel pellets from biomass]", Vostochno-Evropejskij zhurnal peredovich technologij [Eastern-European Journal of Enterprise Technologies], No. 8/45(3), pp. 36–40, ISSN 1729-3774.

Bhattarai Sujala, Jae-Heun Oh, Seung-Hee Euh, Dae Hyun Kim, Liang Yu(2014), "Simulation Study for Pneumatic Conveying Drying of Sawdust for Pellet Production", Drying Technology, No. 32, pp. 1142–1156, ISSN 0737-3937, doi: 10.1080/07373937.2014.88457.

Jussi Laurila, Havimo Mikko, Lauhanen Risto (2014), "Compression drying of energy wood", Fuel Processing Technology, No. 124, pp. 286–289, ISSN 0378-3820, doi: 10.1016/j.fuproc.2014.03.016.

Liu Yuping, Aziz Muhammad, Kansha Yasuki, Bhattacharya Sankar, Tsutsumi Atsushi (2014), "Application of the self-heat recuperation technology for energy saving in biomass drying system", Fuel Processing Technology, No. 117, pp. 66–74, ISSN 0378-3820, doi: 1016/j.fuproc.2013.02.007.

Hai-tao Wang, Heming Jia (2013), "Study of Immune PID Controller for Wood Drying System", 2013 International Conference on Communication Systems and Network Technologies, pp. 827–831, ISBN 1-4673-5603-9. – doi: 10.1109/csnt.2013.176.

Zhongfu, Tian, Li Yuehua (2013), "Research on control system of wood drying based on BP Neural Network" Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer(MEC), pp. 36–38, ISBN 4-4799-2564-3, doi: 10.1109/mec.2013.6885046.

Patrick Perre, Roger Keey (2014) "Drying of Wood: Principles and Practices", Handbook of Industrial Drying, pp. 797–846, ISSN 978-1-4665-9665-8, doi: 10.1201/b17208-44.

Chaikovskaya, E. E. (2016), "Development of energy-saving technology maintaining the functioning of a drying plant as a part of the cogeneration system", Eastern-European Journal of Enterprise Technologies, No 3/8(81), pp. 42–46, ISSN 1729-3774, doi: 10.15587/1729-4061.2016.72540.


Пристатейна бібліографія ГОСТ


1    Гелетуха, Г. Г. Биоэнергетика в Украине: современное состояние и перспективы развития. Часть 2 / Г. Г. Гелетуха, Т. А. Железная, П. П. Кучерук, Е. Н. Олейник, А. В. Трибой // Промышленная теплотехника. – 2015. – Т. 37, № 3. – С. 65–73. – ISSN 0204-3602.

 

2    Чайковська, Є. Є. Розробка енергозберігаючої технології підтримки функціонування біодизельної установки у складі когенераційної системи / Є. Є. Чайковська // Восточно-Европейский журнал передовых технологий. – 2016. – № 1/8(79). – С. 4–11. – ISSN 1729-3774. – doi: 10.15587/1729-4061.2016.59479.

 

3    Трошин, А. Г. Развитие процессов и оборудования для производства топливных брикетов из биомассы / А. Г. Трошин, В. Ф. Моисеев, И. А. Тельнов, С. И. Завинский // Восточно-Европейский журнал передовых технологий. – 2010. – № 8/45(3). – С. 36–40. – ISSN 1729-3774.

 

4    Bhattarai, Sujala. Simulation Study for Pneumatic Conveying Drying of Sawdust for Pellet Production / Sujala Bhattarai, Jae-Heun Oh, Seung-Hee Euh, Dae Hyun Kim, Liang Yu // Drying Technology. – 2014. – Vol. 32. – p. 1142–1156. – ISSN 0737-3937. – doi: 10.1080/07373937.2014.884575.

 

5    Laurila, Jussi. Compression drying of energy wood / Jussi Laurila, Havimo Mikko, Lauhanen Risto // Fuel Processing Technology. – 2014. – Vol. 124. – p. 286–289. – ISSN 0378-3820. – doi: 10.1016/j.fuproc.2014.03.016.

 

6    Yuping, Liu. Application of the self-heat recuperation technology for energy saving in biomass drying system / Liu Yuping, Aziz Muhammad, Kansha Yasuki, Bhattacharya Sankar, Tsutsumi Atsushi // Fuel Processing Technology. – 2014. – Vol. 117. – p. 66–74. – ISSN 0378-3820. – doi: 1016/j.fuproc.2013.02.007.

 

7    Wang, Hai-tao.  Study of Immune PID Controller for Wood Drying System / Hai-tao Wang, He-ming Jia // 2013 International Conference on Communication Systems and Network Technologies. – 2013. – p. 827–831. – ISBN 1-4673-5603-9. – doi: 10.1109/csnt.2013.176.

 

8    Zhongfu, Tian. Research on control system of wood drying based on BP Neural Network / Tian Zhongfu, Li Yuehua // Proceedings 2013 International Conference on Mechatronic Sciences, Electric Engineering and Computer(MEC). – 2013. – p. 36–38. – ISBN 4-4799-2564-3. – doi: 10.1109/mec.2013.6885046.

 

9    Perre, Perre. Drying of Wood: Principles and Practices / Patrick Perre, Roger Keey // Handbook of Industrial Drying. – 2014. – p. 797–846. – ISSN 978-1-4665-9665-8. – doi: 10.1201/b17208-44.

 

10   Чайковська, Є. Є. Development of energy-saving technology maintaining the functioning of a drying plant as a part of the cogeneration system / Є. Є. Чайковська // Восточно-Европейский журнал передовых технологий. – 2016. – Т. 3, № 8(81). – С. 42–46. – ISSN 1729-3774. – doi: 10.15587/1729-4061.2016.72540.