Prospects of the Use of Heat-Exchange Surfaces for the Gas Turbine Plant Regenerators Intensifying the Heat Release by the Ridges and Cavities
DOI:
https://doi.org/10.20998/2078-774X.2017.09.07Анотація
The heat regeneration results in an increase in the efficiency factor of gas turbine plant (GTP) on average by 6 to 8% (absolute); however the plant size and mass are increased significantly. In this connection, when designing the regeneration GTP an important task is to reduce the regenerator mass and increase its compactness; one of the ways to the solution of this problem is to make use of intensified heat-exchange surfaces. Joint experimental and computational research done by the Institute for Engineering Heat Physics of the National Academy of Sciences of Ukraine and the state-owned Scientific and Production Company SE Gas Turbine Scientific Production Complex "Zorya"-"Mashproekt" allowed us to determine the influence produced by the ridges and cavities of a different shape arranged on external and internal pipe surfaces on the heat release, hydraulic resistance and the tubular regenerator mass. It has been established that the arrangement of holes on the external surface would increase the heat release by a factor of 1.16 to 1.97 with an insignificant increase in the resistance (on average 1.01 times), which will result in the reduction of the mass of heat exchange surface by 33 %. Spiral grooves made on the external surface of the pipes would increase the heat release 1.5–1.9 times with the 21 to 32 % mass reduction. The formation of cylindrical projections on the internal surface of pipes would increase the heat release 1.03–1.5 times and the resistance 1.18–2.85 times which may result both in the mass decrease (by 18 %) and the mass increase (by 27 %). The use of spiral ribs results in 1.75–2.25 times increase in the heat release and 4.05–6.8 times increase in the resistance and the mass is increased by 37 %.Посилання
Paton, B., Khalatov, A., Kostenko, D., Bileka, B., Pysmennyi, O., Botsula, A., Parafiinyk, V. and Koniakhin,V.(2008),"Kontseptsiia (proekt) derzhavnoi naukovo-tekhnichnoiprohramy"Stvorenniapromyslovykhhazoturbinnykhdvyhunivnovoho pokolinnia dlia hazovoi promyslovosti ta enerhetyky [Concept(project)of the state researchanddevelopmentprogram"Development of industrial gas turbine engines of new generationforgasindustryandpowerengineering"]", Visn. NAN Ukrainy [Herald of the NAS of Ukraine], No. 4, pp. 3–9.
Khalatov, A. A. and Kostenko, D. A. (2008), "Kakye hazoturbynnye dvyhately neobkhodymy hazotransportnoisystemeUkrayny? [What gas turbine engines do need to the gas-transport system of Ukraine?]",Hazoturbynnyetekhnolohyy[Gasturbotechnology], No. 7, pp. 22–24.
Bazhan, P. Y., Kanevets, H. E. and Selyverstov, V. M. (1989), Spravochnyk po teploobmennym apparatam [Referencebookon heat-exchangers], Mashynostroenye, Moscow, USSR.
Zarjankin, A. E., Zarjankin, V. A., Zrojchikov, N. A., Lomakin, B. V., Serebrjannikov, N. I. and Simonov, B. P.(1999),"Primenenie novyh teploperedajushhih poverhnostej dlja modernizacii vozdushnyh regenerativnyh podogrevatelej[Applicationofnew heat exchange surfaces for modernization of air regenerative heaters]", Teplojenergetika[ThermalEngineering], No. 12, pp. 40–43.
Astanovskij, D. L. (2007), "Ispol'zovanie teploobmennyh apparatov novoj konstrukcii v teplojenergetike [The use of heat-exchangers of new construction in thermal engineering]", Teplojenergetika [Thermal Engineering], No. 7, pp. 46–51.
Pysmennyi E. N., Terekh, A. M., Semeniako, A. V. and Baraniuk, A. V. (2010), "Teploaerodynamycheskaiaeffektyvnosttrubchatekh poverkhnostei nahreva reheneratorov GTU [Heat-aerodynamic efficiencyoftubular heat transfer surfaces of gas-turbine plants regenerators]", Promyshlennaia teplotekhnyka [Industrialheatengineering], Vol. 32 No. 4, pp. 63–73.
Hriaznov, N. D., Epyfanov, V. M., Yvanov, V. L. and Manushyn, E. A. (1985), Teploobmennye ustroistva hazoturbynnykhykombynyrovannykh ustanovok [Heat-exchangers of gas-turbine and combined plants],Mashynostroenye,Moscow, USSR.
Movchan, S. N., Bochkarev, Yu. V. and Solomonuk, D. N. (2009), "Reheneratory proekta TsNYOKR "Mashproekt"dliastatsyonarnykh y sudovykh hazoturbynnykh ustanovok [Regenerators of project CSRD «Mashproekt»forthestationaryandshipgas-turbine plants]", Naukovi pratsi MDGU. Seriia «Tekhnohenna bezpeka»[BulletinofMSHU.Series"Technogenicsafety"], Vol. 111 No. 98, pp. 205–210.
Spytsyn, V. E., Botsula, A. L., Chobenko, V. N. and Solomonuk, D. N., (2008) "Vysokoeffektyvnaia hazoturbynnaiaustanovkadlia HPA [High-efficiency gas-turbine plant for gas pumping unit]", Vestnyk NTU"KhPY"[BulletinofNTU"KhPI".Technologies in machinebuilding], No. 34, pp. 3–6.
Spytsyn, V. E., Botsula, A. L., Movchan S. N., Chobenko, V. N. and Solomonuk, D. N. (2010)"Regenerativnajagazoturbinnaja ustanovka dlja GPA moshhnost'ju 16 MVt [Regenerative gas turbine plant for gas pumping unit ratedat16MWt]",Turbiny i dizeli[Turbines & Diesels], No. 5, pp. 28–31.
Kovalenko, G. V., (1998), "Teplotdacha i gidravlicheskoe soprotivlenie trubchatyh poverhnostej s cilindricheskimi lunkamipripoperechnom obtekanii v odnorjadnih puchkah [Heat emission and hydraulic resistance oftubularsurfaceswithcylindricalsmallholes at the transversal flowing around in one row bunches]", Promyshlennaja teplotehnika[Industrialheatengineering], Vol. 20 No.3,pp. 65–70.
Khalatov, A. A. and Kovalenko, G. V. (2003) "Fluid Flow and Heat Transfer Features at a Cross-Flow of Dimpled Tubes inaConfined Space", Proceeding of ASME. Turbo Expo: Power for Land, Sea, and Air, Vol. 5: Turbo Expo 2003,PartsAandB,pp.945–954, doi: 10.1115/GT2003-38155,availableat:http://proceedings.asmedigitalcollection.asme.org/proceeding.aspx?articleID=1577949 (accessed 15January2017).
Khalatov, A. A. and Kovalenko G. V. (2008) "Teplogidravlicheskaja jeffektivnost' krugovyh cilindrov s vystupami iuglublenijamipri poperechnom obtekanii [Heat and hydraulic efficiency of circular cylinders withledgesanddeepeningsatthetransversal flowing]", Promyshlennaja teplotehnika [Industrial heat engineering], Vol. 30 No. 1,pp.10–15.