DOI: https://doi.org/10.20998/2078-774X.2017.09.11

Approximate Analytical Method for the Computation of Asymmetric Heating of the Infinite Plate

Alexandr Brunetkin, Maxim Maxymov

Анотація


The fuel of a variable composition can change heat exchange conditions in the structure elements of heat power equipment. This can be manifested by energy accumulation effects and affect the equipment operation. Computational skills that enable the calculation of nonstationary temperature fields in structure elements are of great importance for the operation controllability. First of all, it concerns analytical computation methods. The purpose of this research was to develop the approximate analytical method for the computation of nonstationary temperature fields inside the infinite plate exposed to the asymmetrical heating, in particular at different heat emission coefficients on its sides, but the same ambient temperature. The solution is based on the use of the method of integral coefficients. It provides for the use of a priori information in the form of a selected profile of a change in temperature. The solution is done with the integral coefficient accuracy. Its value is defined by the comparison of obtained data and already available analytical, numerical and experimental data. As a result, we derived a simple analytical expression that enables the computation of a change in the temperature at different points on the plate. The accuracy of obtained data is comparable with the permissible accuracy of engineering computations. The obtained expression allows for the generalization of computation data due to a decrease in the number of independent variables. In the dimensionless form a modified number of homochronicity is used instead of generally used criteria Bi (Bio) and Fo (Fourier) number. Due to this fact just one curve (one independent variable) is used instead of the set of curves (two independent variables) to determine a relative temperature at some points.

Повний текст:

PDF (Русский)

Посилання


Brunetkin, A. I., Maksimov, M. V. and Bondarenko, A. V. (2014), "The Identification oftheQuantitativeCompositionofUnknownGaseous Fuel and its Combustion Products using the Measured TechnologicalParametersof theFuelCombustion Process",Bulletinof NTU "KhPI". Series: Power and heat engineering processesandequipment, No. 12(1055), pp. 131–141,ISSN2078-774X.

Brunetkin, A. I. and Gusak, A. V. (2015), "Determining the range of variation of convective heat transfer coefficientbyburning alternative types of gaseous fuel", Collection of the Odessa Polytechnic University, Vol. 2(46), pp. 79-84, ISSN 2223-3814(online).

Profos, P. (1962), Regulation of steam power plants, Springer-Verlag, Berlin.

Demchenko, V. A. (2001), Automation and modeling processes nuclear and thermal power plants, Astroprint, Odessa.

Carslaw, H. S. and Jaeger J. C. Conduction of heat in solids, 2nd ed., Oxford, At the Clarendon Press.

Lykov, A. V. (1967), The theory of heat conduction, Higher School, Moscow, Russia.

Brunetkin, A. I. (2014), "Integrated approach to solving the fluiddynamics and heat transfer problems”, Proceedings oftheOdessa Polytechnic University, Vol. 2(44), pp 108–115, ISSN 2076-429 (print); ISSN 2223-3814 (on line).

Patankar, S. V. (1980), Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Corporation, New York.


Пристатейна бібліографія ГОСТ


1 Брунеткин, А. И. Идентификация количественного состава неизвестногогазообразногогорючегоиегопродуктовсгорания на основе измеренных технологическихпараметровпроцесса сжигания топлива/А.И.Брунеткин, М. В. Максимов, А. В. Бондаренко // ВісникНТУ«ХПІ». Серія: Енергетичні татеплотехнічніпроцесийустаткування. – Х.: НТУ «ХПІ», 2014. – № 12(1055). –С.131–141. – Бібліогр.: 5 назв. –ISSN2078-774X.
2 Брунеткин, А. И. Визначення діапазону зміни конвективного коефіцієнта тепловіддачі приспалюванніальтернативних видів газоподібного пального / А. И. Брунеткин, А. В. Гусак //ПраціОдеськогополітехнічногоуніверситету. – Одеса:ОНПУ, 2015. – Вип. 2(46). – С. 79–84. – ISSN 2223-3814 (online).
3 Профос, П. Регулирование паросиловых установок / П. Профос ; Пер. с англ., под ред. Н. И. Давыдова. – Москва:Энергия, 1967. – 368 с.
4 Демченко, В. А. Автоматизация и моделирование технологических процессов АЭС и ТЭС : учебное пособие / В.А.Демченко. – Одесса : Астропринт, 2001. – 308 с.
5 Карслоу, Г. Теплопроводность твердых тел / Г. Карслоу, Д. Егер ; Пер. с англ., под ред. А. А. Померанцева. –Москва : Наука, 1964. – 488 с.
6 Лыков, А. В. Теория теплопроводности / А. В. Лыков. – Москва : Высшая школа, 1967. – 600.
7 Brunetkin, A. I. Integrated approach to solving the fluiddynamics and heat transfer problems / A. I. Brunetkin //ПраціОдеського політехнічного університету. – Одеса : ОНПУ, 2014. – Вип. 2(44). – С. 108–115. – ISSN 2076-2429(print);ISSN2223-3814 (on line).
8 Патанкар, С. Численные методы решения задач теплообмена и динамики жидкости / С. Патанкар ; Пер. с англ.подред. В. Д. Виленского. – Москва : Энергоатомиздат, 1984. – 126 с.