Approaches to the Simulation of Thermal Hydraulic Processes in the Oil System Elements of Gas Turbine Engine

Автор(и)

DOI:

https://doi.org/10.20998/2078-774X.2017.10.11

Анотація

Design of the oil-system for gas-turbine engines requires the calculation of the exact fuel consumption and pressure losses in the pipelines, the heat exchange between the oil and the lubrication system elements, critical modes of the flow in the pipelines and local resistances. A development of the model of oil system that will enable the measurement of the flow rate and other parameters at any place inside the oil system, the numerical investigation of the influence of structural improvements taking into account these parameters is a rather promising outlook. A specific feature of the oil system of gas turbine engine is that the oil and air mixture is passing instead of single-phase liquid (oil) actually in each element of it, which affects the behavior of thermohydraulic processes in these elements. This scientific paper gives consideration to the peculiarities of the two-phase flow of oil-gas mixture, heat-mass exchange processes that occur in the oil cavity of the rotor rack of gas turbine engine and prevalent approaches to their analysis. Consideration was also given to specific features of software products available for the numerical simulation of thermal hydraulic processes and the possibility of their use for the development of the model of oil system for the gas turbine engine has been analyzed. This scientific paper showed that the investigations carried out in this field require theoretical approaches to the problem solution, the use of state-of-the-art program packages for numerical experiments and the availability of experimental base.

Посилання

Krivosheev, I. A. (2008), "Imitacionnoe modelirovanie raboty aviacionnyh GTD s ehlementami sistem upravleniya[Theimitationmodeling of air turbine engines with control system elements]", Vestnik UGATU [ScientificjournalofUfaStateAviationTechnical University], Vol. 11, No. 2, pp. 37–38.

Inozemcev, A. A, Nihamkin, M. A. and Sandrackij, V. L. (2008), Avtomatika i regulirovanie aviacionnyh dvigatelejiehnergeticheskih ustanovok [Automation and regulation of aviation engines andpowerinstallations],Vol.5,Mashinostroenie,Moscow, Russia.

Domotenko, N. T and Kravec, A. S. (1972), Maslyanye sistemy gazoturbinnyh dvigatelej [Oil system of gas turbineengines],Transport, Moscow, Russian.

Bich, M. M., Vejnberg, E. V. and Surnov, D. N. (1979), Smazka aviacionnyh gazoturbinnyh dvigatelej [Lubrication ofaircraftgas turbine engines], Mashinostroenie, Moscow, Russia.

CHigrin, V. S. and Belova, S. E. (2005), Sistemy i agregaty GTD [Gas turbine engine units and systems], RGATA, Rybinsk.

Battervors, D. (1980), Teploperedacha v dvuhfaznom potoke [Two-phase flow and heat transfer], Translated by Ygova A.V.,Energiya, Moscow.

Isachenko, V. P., Osipova, V. A. and Sukomel A. S. (1981), Teploperedacha [Heat transfer], Energiya, Moscow, Russia.

Wang, C, Morvan, H. P., Hibberd, S. and Cliffe, K. A. (2011), "Thin Film Modelling For Aero-Engine BearingChambers",Vancouver, British Columbia, Canada, ASME 2011 Turbo Expo: Turbine Technical Conference andExposition,Vol. 1, pp. 1–10,ISBN 978-0-7918-5461-7.

Vinogradov, A. S., Badykov, R. R. and Fedorchenko, D. G. (2014), "Issledovanie teplovogo sostoyaniya oporyaviacionnogogazoturbinnogo dvigatelya [Analysis of the thermal state of aircraft engine supports]", Vestnik SGAU(SamaraStateAerospaceUniversity), Vol. 1, No. 5(47), pp. 37–44, ISSN: 2541-7533.

Demidovich, V. M. (1978), Issledovanie teplovogo rezhima podshipnikov GTD [Investigation of the thermal regime ofthebearings GTE], Mashinostroenie, Moscow.

Majumdar, A. K, Bailey, J. W., Schallhorn, P. A. and Steadman, T. (1998), "A Generalized Fluid System Simulation ProgramtoModel Flow Distribution in Fluid Networks", AIAA, No. 98-3682.

McAmis, R. W, Miller, J. T., Burdette, R. R. and Milleville, D. E. (1996), "Modeling Fluid Flow Networks", AIAA, No. 96-3120.

Kuznecov, O. A. (2015), Osnovy raboty v programme Aspen HYSYS [The basics of working in the program Aspen HYSYS],M.Direkt-Media, Berlin, ISBN 978-5-4475-4649-6.

Yaguo, Lu, Zhenxia, Liu and Shengqin, Huang (2009), "Numerical Simulation of Aero-Engine Lubrication System", JournalofEngineering for Gas Turbines and Power, Vol. 131, doi: 10.1115/1.3026573.

Kanarachos, S. and Flouros, M. (2012), "Simulation of the Air-Oil Mixture Flow in the Scavenge Pipe of an AeroEngine",Advances in Remote Sensing, finite differences and information security, pp. 78–83, ISBN 978-1-61804-127-2.

Lisicin, A. N. (2015), "Povyshenie ehffektivnosti proektirovaniya maslyanyh polostej opor gtd na osnove metodachislennogomodelirovaniya dvuhfaznogo techeniya [Increase the productivity of the oil cavities supports GTD method-basednumericalsimulation of two-phase flow]", Abstract of a Thesis Candidate of Technical Sciences (Ph. D.), Rybinsk.

##submission.downloads##

Опубліковано

2017-10-30

Як цитувати

Mykhailenko, T. P., Nemchenko, D. O., Douaissia, O. H. A., & Petukhov, I. I. (2017). Approaches to the Simulation of Thermal Hydraulic Processes in the Oil System Elements of Gas Turbine Engine. Вісник Національного технічного університету «ХПІ». Серія: Енергетичнi та теплотехнiчнi процеси й устаткування, (10), 79–84. https://doi.org/10.20998/2078-774X.2017.10.11

Номер

Розділ

Енергетичні та теплотехнічні процеси й устаткування