Influence of Climatic Factors on the Efficiency of Disposal Metal- Hydride Unit for the Double-Fuel Low-Speed Internal Combustion Engine of Gas Tankers
DOI:
https://doi.org/10.20998/2078-774X.2017.10.12Анотація
Contemporary tendencies in the development of ship power engineering have been analyzed. Consideration was given to the specific features of the transportation of liquefied natural gas by gas tankers. The prospects of utilization of the secondary energy resources of marine double-fuel low-speed diesel engines were defined. The metal hydride units of a continuous action were offered for this purpose. The need for the estimation of the influence of climatic factors on the efficiency of disposal metal-hydride unit has been defined. We proposed to carry out the investigation using the methods of mathematical simulation. The model takes into consideration the main physical relations, in particular material and thermal balances, the phase equilibrium, and heat-mass transfer processes. A relative power of disposal metal-hydride unit was taken as the efficiency criterion. The investigation was carried out with the regard to the propulsive unit of gas tanker of a Q-max type with the propulsion engine 9G80ME. The design diagram of the unit and the parameters of working media have been presented. The data of mathematical simulation of processes have been given. The disposal metal- hydride unit showed a reliable operation in different climatic operation conditions. A specific power of the disposal unit ranged from 5.7 to 6.2 %. The mechanical power of disposal unit was equal to 2.5 MW that enables the drive of the fuel gas compressor of propulsion engine and attached electric generator.
Посилання
(2016), IMO Train the Trainer (TTT) Course on Energy Efficient Ship Operation. Module 2 –ShipEnergyEfficiencyRegulationsandRelatedGuidelines,availableat:http://www.imo.org/en/OurWork/Environment/PollutionPrevention/AirPollution/Documents/Air%20pollution/M2%20EE%20regulations%20and%20guidelines%20final.pdf (accessed 6February2017).
(2016), BP Energy Outlook 2035, available at: https://www.bp.com/ content/dam/bp/pdf/energy-economics/energy-outlook-2016/bp-energy-outlook-2016.pdf (accessed 6 February 2017).
Głomski, P. and Michalski, R. (2011), "Problems with Determination of Evaporation Rate and Properties of Boil-off Gas onBoardLNG Carriers", Journal of Polish Cimac, Energetic aspects, Vol. 6, No. 1, pp. 133–140.
(2014), ME-GI Dual Fuel MAN B&W Engines. MAN Diesel & Turbo. 5510-0063-06ppr Aug 2014, availableat:http://marine.man.eu/docs/librariesprovider6/technical-papers/me-gi-dual-fuel-man-b-amp-w-engines433833f0bf5969569b45ff0400499204.pdf?sfvrsn=34 (accessed 16 January 2017).
(2014), LNG Carriers with ME-GI Engine and – High Pressure Gas Supply System. MAN Diesel & Turbo. 5510-0026-04pprSep2014, available at: http://marine.man.eu/docs/librariesprovider6/technical-apers/lng-carriers-with-high-pressure-gas-supply-system.pdf?sfvrsn=16 (accessed 16 January 2017).
Tkach, М. Р., Timoshevskij, B. G., Docenko, S. M. and Galynkin, J. N. (2015), "Udel'naja moshhnost'metallogidridnyhutilizacionnyh ustanovok nepreryvnogo dejstvija [Specific power the metalhydrideutilizationcontinuouspowerplants]",Aviacionno-kosmicheskaja tehnika i tehnologija [Aerospace technicandtechnology], No. 10(127), pp. 106–110,ISSN 1727-7337.
Tkach, М. Р., Timoshevskij, B. G., Docenko, S. M. and Galynkin, J. N. (2016), "Utilizacija tepla vtorichnyhjenergoresursovmalooborotnyh dvigatelej stacionarnyh jelektrostancij metallogidridnymi ustanovkaminepreryvnogodejstvija[Heatrecoveryfromwaste energy low-speed engines stationary power plant metalhydridecontinuous plant]",Vestnikdvigatelestrornij[Herald of Air-engine Building], No. 2, pp. 31–35, ISSN 1727-0219.
Tkach, М. Р., Timoshevskij, B. G., Docenko, S. M. and Galynkin, J. N. (2014), "Vlijanie regeneracii jenergii najeffektivnost'utilizacii nizkopotencial'nogo tepla metallogidridnoj ustanovkoj nepreryvnogo dejstvija [Influenceoftheenergyrecuperationonlow-grade heat recovery in the metalhydride installation ofcontinuousoperation]",Dvigatelivnutrennegosgoranija[Internal Combustion Engines], No. 2, pp. 57–62, ISSN 0419-8719.
Tkach, М. Р., Timoshevskij, B. G., Docenko, S. M. and Galynkin, J. N. (2014), "Utilizacija nizkopotencial'nogo tepla DVS9G80ME metalogidridnoj ustanovkoj nepreryvnogo dejstvija [Low grade heat recovery from ice 9G80 ME by the metal-hydrideinstallation of continuous operation]", Dvigateli vnutrennego sgoranija [Internal Combustion Engines], No. 1, pp. 35–41,ISSN 0419-8719.
Gaspar, H. M., Ross, A., Rhodes, D. H. and Erikstad, A. S. (2012), "Handling Complexity Aspects in Conceptual ShipDesign",Int'l Maritime Design Conference, Glasgow, UK, pp. 150–160, doi: 10.3940/rina.ijme.2012.a3.230.
Erikstad, S.O., Solem, S. and Fagerholt, A. (2011), "A Ship Design and Deployment Model for Non-Transport Vessels",ShipTechnology Research, Vol. 58 No. 3, pp. 132–141.
Dimopoulos, G. G., Christos, A. and Frangopoulos, A. (2008), "Thermoeconomic Simulation of Marine Energy Systems foraLiquefied Natural Gas Carrier", Int. J. of Thermodynamics, Vol. 11 No. 4, pp. 195–201, doi: 10.5541/ijot.228.
Dimopoulos, G. G., Christos, A. and Frangopoulos, A. (2008), "A Dynamic Model for Liquefied Natural Gas EvaporationDuringMarine Transportation", Int. J. of Thermodynamics, Vol. 11 No. 3, pp. 123–131, doi: 10.5541/ijot.220.
Dobrota, D., Lalik, B. and Komar, B. (2013), "Problem of Boil – off in LNG Supply Chain", Transactions on Maritime Science,No.02, pp. 91–100, doi: 10.7225/toms.v02.n02.001.
(2014), Höegh LNG Partners LP, September 1, availableat:https://www.sec.gov/Archives/edgar/data/1603016/000119312514302189/d701161d424b4.htm (accessed6February 2017).